Nilpotent Structures in Ergodic Theory

Bernard Host
Bryna Kra
Nilpotent Structures in Ergodic Theory
Nilpotent Structures in Ergodic Theory

Bernard Host
Bryna Kra
To Bati
To Brian
Contents

Chapter 1. Introduction
 1. Characteristic factors 1
 2. Towers of factors 3
 3. Cubes, norms, nilfactors, and structure theorems 4
 4. Nilsequences in ergodic theory and in combinatorics 6
Organization of the book
Acknowledgments 8

Part 1. Basics
Chapter 2. Background material 11
 1. Groups and commutators 11
 2. Probability spaces 14
 3. Polish, locally compact, and compact abelian groups 20
 4. Averages on a locally compact group 22
References and further comments 24

Chapter 3. Dynamical Background 27
 1. Topological dynamical systems 27
 2. Ergodic theory 29
 3. The Ergodic Theorems 36
 4. Multiple recurrence and convergence 38
 5. Joinings 40
 6. Inverse limits of dynamical systems 42
References and further comments 45

Chapter 4. Rotations 47
 1. Topological and measurable rotations 47
 2. The Kronecker factor 52
 3. Decomposition of a system via the Kronecker 55
References and further comments 59

Chapter 5. Group Extensions 61
 1. Group extensions 61
 2. Extensions by a compact abelian group 65
 3. Cocycles and coboundaries 67
References and further comments 78

Part 2. Cubes
Chapter 6. Cubes in an algebraic setting 83
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basics of algebraic cubes</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>Cubes in an abelian group</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>Cubes in nonabelian groups</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>Cubes in homogeneous spaces</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>References and further comments</td>
<td>105</td>
</tr>
<tr>
<td>7</td>
<td>Dynamical cubes</td>
<td>107</td>
</tr>
<tr>
<td>1</td>
<td>Basics of dynamical cubes</td>
<td>107</td>
</tr>
<tr>
<td>2</td>
<td>Properties of topological dynamical cubes</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>References and further comments</td>
<td>112</td>
</tr>
<tr>
<td>8</td>
<td>Cubes in ergodic theory</td>
<td>113</td>
</tr>
<tr>
<td>1</td>
<td>Initializing the construction: the measure $\mu^{[2]}$ and the seminorm $| \cdot |_2$</td>
<td>114</td>
</tr>
<tr>
<td>2</td>
<td>Construction of the measures $\mu^{[k]}$</td>
<td>118</td>
</tr>
<tr>
<td>3</td>
<td>The seminorms $| \cdot |_k$</td>
<td>124</td>
</tr>
<tr>
<td>4</td>
<td>Dynamical dual functions</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>References and further comments</td>
<td>134</td>
</tr>
<tr>
<td>9</td>
<td>The Structure factors</td>
<td>135</td>
</tr>
<tr>
<td>1</td>
<td>Construction of the structure factors</td>
<td>135</td>
</tr>
<tr>
<td>2</td>
<td>Structured systems</td>
<td>143</td>
</tr>
<tr>
<td>3</td>
<td>Ergodic seminorms and the centralizer</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>References and further comments</td>
<td>150</td>
</tr>
<tr>
<td>10</td>
<td>Nilmanifolds</td>
<td>151</td>
</tr>
<tr>
<td>1</td>
<td>Nilpotent Lie groups</td>
<td>153</td>
</tr>
<tr>
<td>2</td>
<td>Nilmanifolds</td>
<td>158</td>
</tr>
<tr>
<td>3</td>
<td>Subnilmanifolds</td>
<td>162</td>
</tr>
<tr>
<td>4</td>
<td>Bases and generators</td>
<td>166</td>
</tr>
<tr>
<td>5</td>
<td>Countability of nilmanifolds</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>References and further comments</td>
<td>172</td>
</tr>
<tr>
<td>11</td>
<td>Nilsystems</td>
<td>175</td>
</tr>
<tr>
<td>1</td>
<td>Topological and measure theoretic nilsystems</td>
<td>175</td>
</tr>
<tr>
<td>2</td>
<td>Ergodic and minimal nilsystems</td>
<td>179</td>
</tr>
<tr>
<td>3</td>
<td>Applications and generalizations</td>
<td>184</td>
</tr>
<tr>
<td>4</td>
<td>Unipotent affine transformations of a nilmanifold</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>References and further comments</td>
<td>192</td>
</tr>
<tr>
<td>12</td>
<td>Cubic structures in nilmanifolds</td>
<td>193</td>
</tr>
<tr>
<td>1</td>
<td>Cubes in nilmanifolds and nilsystems</td>
<td>194</td>
</tr>
<tr>
<td>2</td>
<td>Gowers seminorms for functions on a nilmanifold</td>
<td>202</td>
</tr>
<tr>
<td>3</td>
<td>Algebraic dual functions</td>
<td>206</td>
</tr>
<tr>
<td>4</td>
<td>The order k Fourier algebra of a nilmanifold</td>
<td>212</td>
</tr>
<tr>
<td>5</td>
<td>Some properties of the Fourier algebra of order k</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>References and further comments</td>
<td>219</td>
</tr>
</tbody>
</table>
Chapter 13. Factors of nilsystems 221
1. Basics of factors of nilsystems 221
2. Quotient by a compact subgroup of the centralizer 227
3. Inverse limits of nilsystems and their intrinsic topology 231
References and further comments 234

Chapter 14. Polynomials in nilmanifolds and nilsystems 235
1. Polynomial sequences in a group 235
2. Polynomial orbits in a nilmanifold 242
3. Dynamical applications 247
References and further comments 252

Chapter 15. Arithmetic progressions in nilsystems 255
1. Arithmetic progressions in nilmanifolds and nilsystems 255
2. Ergodic decomposition 260
3. References and further comments 264

Part 4. Structure Theorems 265

Chapter 16. The Ergodic Structure Theorem 267
1. Various forms of the Ergodic Structure Theorem 267
2. Nilsequences and a nonergodic Structure Theorem 270
3. Factors of inverse limits of nilsystems 274
References and further comments 275

Chapter 17. Other structure theorems 277
1. A Topological Structure Theorem 278
2. The Inverse Theorem for Gowers norms 280
References and further comments 283

Chapter 18. Relations between consecutive factors 285
1. Starting the induction and an overview of the proof 285
2. First properties of the extension between consecutive factors 286
3. Cocycles of type k 290
4. From cocycles of type k to systems of order k 294
5. Connectedness 297
References and further comments 302

Chapter 19. The Structure Theorem in a particular case 303
1. Strategy and preliminaries 303
2. Construction of a group of transformations 306
3. X is a nilsystem 311
References and further comments 316

Chapter 20. The Structure Theorem in the general case 317
1. Further understanding of cocycles of type k 317
2. Countability 321
3. General cocycles and the Structure Theorem 324
References and further comments 326
Part 5. Applications

Chapter 21. The method of characteristic factors
1. The van der Corput Lemma
2. Arithmetic progressions and linear patterns
3. Convergence of polynomial averages
References and further comments

Chapter 22. Uniformity seminorms on ℓ^∞
and pointwise convergence of cubic averages
1. Uniformity seminorms along a sequence of intervals
2. Relations with Gowers norms on \mathbb{Z}_N
3. Pointwise convergence of cubic averages
References and further comments

Chapter 23. Multiple correlations, good weights,
and anti-uniformity
1. Decompositions for multicorrelations
2. Bounding weighted ergodic averages
3. Anti-uniformity
4. A nilsequence version of the Wiener-Wintner Theorem
References and further comments

Chapter 24. Inverse results for uniformity seminorms
and applications
1. Inverse results for uniformity seminorms
2. Characterization of good weights for Multiple Ergodic Theorems
3. Correlation sequences and nilsequences
References and further comments

Chapter 25. The comparison method
1. Recurrence and convergence for the primes
2. Multiple polynomial averages along the primes
References and further comments

Bibliography

Index of Terms

Index of Symbols
Bibliography

410 BIBLIOGRAPHY

Index of Terms

\(\sigma\)-algebra, 14
 - completion of, 15
 - of order \(k\), 137
 - product, 16

abelianization, 179

action, 20
 - by automorphisms, 61
 - faithful, 100
 - faithful in measure, 312
 - free, 61, 315
 - group, 21
 - right, 61
 - transitive, 21, 315

adding machine, 51

affine system, 30, 31, 55
 - basic, 40
 - amenable, 22
 - anti-uniform, 376
 - function, 213
 - strongly \(k\)-anti-uniform, 376

Antolín Camarena, O., 105, 283

approximation of the unit, 312

arithmetic progression, 38, 333
 - in a group, 241, 256
 - in a nilmanifold, 256

Assani, I., 364, 383

Auslander, J., 112

Auslander, L., 192

Austin, T., 46, 346

automorphism, 13
 - group, 13
 - measure preserving system, 64
 - unipotent of class \(t\), 14

averages, 22
 - admits averages, 23
 - along a Følner sequence, 22

Cesàro, 24
 - cross section, 22
 - standard space, 14

Bourgain, J., 6, 347, 383, 406

Candela, P., 105, 283

Cauchy-Schwarz-Gowers Inequality
 - algebraic, 92
 - for sequences, 353
 - for the norm \(\|u^k(\mathbb{Z}/N)\|\), 355
 - for the norm \(\|u^k(G)\|\), 92
 - for the seminorm \(\|\cdot\|_k\), 124, 203
 - in a nilmanifold, 203

centralizer, 24

character, 21
 - additive, 22
 - multiplicative, 21

characteristic factor, 1, 138, 329, 336

Chu, Q., 275, 364

closing property, 59
 - for nilsequences, 279
 - in abelian groups, 59
 - in distal systems, 112
 - in homogeneous spaces, 102
 - unique, 102

co-boundary, 67, 68

co-compact, 158

cocycle, 82
 - affine, 82
 - ergodic, 82

Mackey group of \(a\), 73
 - of type \(k\), 290

cofinal, 43

cohomologous, 67

base point, 159
commutator, 11

group, 12

completion of a \(\sigma \)-algebra, 15

conditional

expectation, 11

product, 12

square, 12

convergence

averages of dual functions, 130

cubic averages, 132, 133, 140, 211

in nilsystems, 183, 186

mean, 36

multiple, 40, 132

linear, 333

polynomial, 40, 385

pointwise, 40

to 0 in density, 367

convolution, 21

multiple, 209

product, 312

Conze, J., 5, 275, 302

Conze-Lesigne Equation, 291

correlation, 366

admits correlations, 350

along 1, 350

linear, 366

multiple, 345, 366

polynomial, 366

sequence, 7, 350, 360, 397

\(k \)th cubic, 350

simple, 367

Correspondence Principle, 387

for distal systems, 387

cross section, 20

cube, 4

\(k \)-dimensional, 84, 87, 109

in homogeneous space, 100

closing property, 89, 112

dynamical, 109

gluing of, 86

in a nilmanifold, 195

restricted group, 206

topological dynamical, 109

cubic averages, 132, 352, 362

derivative sequence, 236

diagonal element, 87

Dirac measure, 15

directed set, 42

disintegration of a measure, 19, 36

distal system, 20, 111, 178, 387

divisible, 117

Donoso, S., 347

dual function, 124

algebraic, 208

dynamical, 128, 130, 138

for a rotation, 128

dual group, 21

dynamical system

topological, 27

trivial, 27

degree, 54

eigenfunction, 32, 12

measurable, 32

topological, 32, 12

eigenvalue, 32

rational, 33

Ellis, R., 112, 192

equi-continuous, 29

maximal factor, 18

equidistribution, 236

in a nilmanifold, 184, 248

in a torus, 246

ergodic, 32

alternate decomposition, 38

cocycle, 32

components, 37

decomposition, 37

decomposition of \(\mu \times \mu \), 115

joining, 10

Structure Theorem, 367

theorem, 39, 10

totally, 39, 50, 221, 105, 106

uniquely, 39

ergodic theorem

Birkoff, 36

good weight, 368

multiple linear, 333

along primes, 109

multiple polynomial, 40, 385

along primes, 405

good weight, 368, 371, 392, 395

pointwise, 36

von Neuman, 36

Walsh, 40, 133, 329, 365, 367, 369

essentially distinct polynomials, 338

exponential map, 187, 187

extension, 44

associated to a cocycle, 32

by a compact abelian group, 65, 250

by a compact group, 52

intermediate, 35, 77

isometric, 66, 288

map, 34

maximal isometric, 64

topological by a compact abelian group, 61

Følner sequence, 22

face, 54

0-dimensional, 84

\(\ell \)-dimensional, 84

gometric, 85

map, 54

of codimension \(k - \ell \), 84

orientation of a, 85
INDEX OF TERMS

upper, 97
facet, 84
k-dimensional group, 95
Haar measure of, 89
lower, 84
opposite, 84
restricted group, 108
upper, 84
factor, 2, 25, 84
above, 35
below, 35
characteristic, 1, 135
characteristic for cubic averages, 140
isomorphism of, 34
Kronecker, 2, 47
larger, 35
maximal, 233
maximal equicontinuous, 110
measurable, 34
topological, 2
factor map, 1, 28, 34
finite-to-one, 222
measurable, 34
topological, 28
faithful, 63, 203
in measure, 317
filtration, 237
induced, 237
of degree s, 237
on a group, 237
on a nilmanifold, 242
quotient, 237
Fourier
algebra of a nilmanifold, 212
algebra of order k, 214
coefficient, 21
Inversion formula, 241
series, 22
vertical coefficient, 67
vertical series, 67
Frantzikinakis, N., 150, 253, 275, 364
frequency, 281
functional equation, 281
fundamental domain, 167
Furstenberg
Correspondence Principle, 39
for distal systems, 357
for sequences, 355
in \mathbb{Z}^d, 78
function, 351
Multiple Recurrence, 359
point, 351
system, 351
Furstenberg, H., 2, 5, 9, 108, 75, 112
252, 253, 275, 302, 346
Gelfand (spectrum, transform), 313
generalized polynomial, 395
generator (continuous, discrete), 108
generic point, 37
gluing, 56, 59, 102
Gottschalk, W., 112
Gowers
seminorm on a nilmanifold, 203
uniformity norm, 91
uniformity norms on \mathbb{Z}^N, 355
Gowers, T., 0, 105, 38, 93, 108
Green, B., 7, 105, 134, 150, 192, 219
Green, L., 192, 345
Goth, W., 192, 345
group
amenable, 22
cocompact, 158
commutator, 12
dual, 21
Hall-Petresco, 256
Lie group, 153
locally compact, 20
nilpotent, 12
of eigenvalues, 53
of facet transformations, 108
of symmetries of $[k]$, 84
of symmetries of Q^k, 122
Polish, 20
semi-direct product of, 16
structure, 178
three groups lemma, 11
uniform, 158
Gutman, Y., 105, 283
Haar measure, 20, 21
of a nilmanifold, 159
of the facet group, 89
of the nilmanifold $Q^{[k]}(X)$, 107
Hahn, F., 192, 253
Hall, P., 256
Hall-Petresco group, 256
Heilbronn, G., 112
Heisenberg group, 157
nilmanifold, 159
semi-identification, 80
homogeneous space, 100
horizontal torus, 191
Host, B., 5, 105, 112, 134, 150, 192
219, 253, 261, 275, 302, 326
359, 374, 381, 383, 397, 408, 407
Huang, W., 6, 264, 347
image of μ, 10

421
intrinsic topology, 233
invariant
\(\sigma\)-algebra, 39
set, 28, 29
inverse limit, 13, 14
measurable, 44
of nilsystems, 234
topological, 43
universal property of, 43
Inverse Theorem, 268, 282
for Gowers norms, 281
for sequences, 394
isolating the first coordinate, 86
isometric extension, 63
isomorphism
of Lebesgue spaces, 16
of measure preserving systems, 1, 34
of topological dynamical systems, 28
Jacobi identity, 163
joining
diagonal, 41
ergodic, 40
finite-to-one, 226
graph, 41
measurable, 40
natural, 41
of nilsystems, 184
of rotations, 28
product, 40
relatively independent, 41
self-joining, 28, 40
topological, 28
Katznelson, Y., 45
Keynes, H., 112
Koopman
operator, 32
representation, 30
Koopman, B., 2
Kra, B., 5, 105, 112, 134, 150, 192, 219,
253, 264, 275, 283, 302, 326, 345, 347,
364, 383, 384, 397, 407
Kronecker factor, 2, 17, 38
Lazard, M., 258, 268
Lebesgue probability space, 14
Leibman, A., 25, 101, 131, 152, 235
Lesigne, E., 5, 112, 221, 275, 302, 383, 407
Lie algebra, 153
Baker-Campbell-Hausdorff formula, 158
Jacobi identity, 158
Lie group, 158
closed subgroup, 154
exponential map, 153
nilpotent, 153
universal cover, 155
Lipschitz, 281
lower central series, 12, 237
Maass, A., 112, 275, 283
Mackey group, 76
Mackey, G., 76
Mal’cev
basis, 166
coordinates, 166
Mal’cev, A., 173
Manners, F., 105, 283
maximal factor
equicontinuous, 18
measurable of order \(k\), 114
topological of order \(k\), 278
McCutcheon, R., 16
measurable
map, 15
set, 15
measure, 13
conditional square, 12
Dirac, 15
disintegration of a, 144, 366
Haar, 20
of order \(k\), 114
spectral, 308
measure preserving system
inverse limit of, 44
rotation, 49
minimal, 28
multiple recurrence, 359, 400
negligible set, 114
nilfactor, 11, 221, 228
nilmanifold, 158
\(s\)-step, 158
affine, 158
base point, 159, 162
Cartesian product, 160
filtered, 242
Heisenberg, 159
of cubes, 165
of polynomial orbits, 240
rational subgroup, 162
subnilmanifold, 163
normal, 164
nilpotent
group, 114, 102
Lie group, 157
nilrotation, 178
nilsequence, 2, 184
approximate, 2, 184
\(k\)-step, 304
closing property of, 290
complexity, 281
polynomial, 247
uniform limit of, 270
nilsystem, 1179
1-step, 176
affine, 176, 292
INDEX OF TERMS

commuting transformations, 157
convergence, 131
ergodic, 179
Heisenberg, 176
inverse limit of joining, 232
measure theoretic minimal, 179
of polynomial orbits, 246
topological uniquely ergodic, 179

norm
Gowers $\|\cdot\|_{U^k(\mathbb{Z}_N)}$, 355
Gowers $\|\cdot\|_{U^k}(G)$, 241
Gowers uniformity, 91

normalizer, 228
null set, 15
 equal modulo null sets, 16

odometer, 53
orbit, 28
 closed, 28
Ornstein, D., 45

Parreau, F., 46
Parry, W., 78, 192, 234
Parseval’s Formula, 22
PET induction, 340
Petresco, J., 252, 264
Polish group, 20
 space, 13
polynomial
 ergodic theorem, 338
 family, 339
 degree, 339
 indexed by m parameters, 339
 regular, 339
 type, 339
 generalized, 339
 integer, 339
 nilsequence, 227
 orbit
 in a nilmanifold, 242
 lift to linear, 237
 nilmanifold of, 245
 nilsystem of, 246
 sequence, 230
 coefficients, 240
 degree, 238
 in a group, 238
 trigonometric, 283
 primes, 105
quasi-coboundary, 97

rational
 filtration, 242
 subgroup, 162
 Ratner, M., 192
 recurrence, 39
 multiple, 39
 multiple polynomial along primes, 106
 reduced form (presented in), 221
 reflection, 86
 regionally proximal relation, 110
 higher order, 110
 regular function, 312
 Riemann integrable, 31
 rotation, 47
 irrational, 51
 measurable, 49
 minimal, 47
 topological, 47
 uniquely ergodic, 49
 vertical, 61
 Rudolph, D., 275
Ruzsa, I., 383

Schmidt, K., 78
semi-direct product, 139

semimnorm, 113
 ergodic of order k, 129
 Gowers seminorm on a nilmanifold, 203
 uniformity, 352
 of order 1, 353
 of order 2, 353
 of order k, 352
 uniformity $\|\cdot\|_{U^k[N]}$, 355

Shao, S., 6, 112, 264, 347
shift
 on $\ell^\infty(\mathbb{Z})$, 244
 on $H^p(X)$, 257
 on $G^\mathbb{Z}$, 247
 small subset, 339
spectral
 measure, 308
 theorem, 307
 stabilizer, 21
standard convention, 155
structure groups, 178
Structure Theorem
 ergodic, 267
 for sequences, 388
 functional form of the, 269
 nonergodic, 273
 topological, 278
 structured component, 270
 subnilsystem, 182
Sun, W., 517
symmetry
INDEX OF TERMS

...system, 27

...basic affine, 30
distal, 29
equi-continuous, 29
measure preserving, 29
of order k, 57 131 207
stationary process, 30
trivial, 30
weakly mixing, 35
systems of order 1, 285
Szegedy, B., 105 283 284
Szemerédi’s Theorem, 38
Szemerédi, E., 3 38 46 105 134 150 192 219 252 253 275 281 283 346 364 407
topological dynamical system, 24
disjoint, 28
inverse limit of, 28
minimal, 28
product, 28
transitive, 28
topological model, 313
topologically conjugate, 28
totally ergodic, 38 221 384
transitive, 28
translation on a nilmanifold, 175
trigonometric polynomial, 281
uniform, 158
along I, 352
density, 347
distribution, 256
unimodular, 20
unipotent
...affine transformation, 157
...affine transformation of a nilmanifold, 188
...automorphism, 134
unique lifting property, 155
uniquely ergodic, 32 51 149
universal cover, 155
universal property, 44
upper Banach density, 33
van der Corput Lemma, 339
...in a group, 330
...for unbounded sequences, 332
...in \mathbb{Z}, 331 332
...in \mathbb{Z}_N, 331
Varjú, P., 106 256
vertex, 53
vertical
...character, 60
...Fourier coefficient, 67
...Fourier series, 67
...rotation, 61 62 178
...von Mangoldt function, 401
...von Neumann, J., 2 45
Walsh, M., 5 10 16 131 316
weakly mixing, 58
measurably, 115 127
topologically, 109
weight
good for the Ergodic Theorem, 368
good for the Multiple Ergodic Theorem, 371
good for the Multiple Polynomial Ergodic Theorem, 369
Weyl, H., 252 345
Weyl Equidistribution Theorem, 236
Wiener-Wintner Theorem, 379
nilsequence version, 380
Wierdl, M., 106 107
Ye, X., 6 112 264 347
Ziegler, T., 7 253 264 275 281 283 107
Zimmer, R., 5 173
Zorin-Kranich, P., 46
Index of Symbols

- (A), 111
- A, 112
- $A_k(X)$, 214
- α^*, 80
- $\text{Aut}(G)$, 13
- (n), 240
- $C_c(G)$, 20
- $\text{Cent}(X)$, 33
- $\text{Cent}(Y, \mu, T)$, 34
- $\text{Coc}(X, K)$, 290
- $\text{Coc}(Y)$, 318
- $\text{Coc}(Y, \nu, T, K)$, 318
- $\text{Coc}(Y)$, 318
- $\text{Coc}(Y)$, 67
- $\text{Com}_G(X)$, 227
- C_z, 91
- $C_c(G)$, 342
- $\text{Cor}(\phi; h)$, 350
- $\text{Cor}(\phi; h)$, 350
- $d(\cdot, \cdot)$, 224
- ∂, 124, 81
- ∂^{ct}, 13
- Δ, 22
- $g[k]$, 290
- $\partial\phi$, 240
- $\partial_{\phi, \nu}$, 240
- $\Delta \rho$, 290
- $\Delta^\nu \rho$, 290
- δ_x, 113
- $D_k(\xi_2, \xi \in [k]^*)$, 128, 208
- $D_k(\xi, \cdot)$, 21
- $e(\cdot)$, 80
- e_G, 111
- ϕ_G, 258
- $E_{\mu}(f | B)$, 18
- $E_{\mu}(f | Y)$, 18
- ξ^*, 83
- $\xi \cdot L$, 87
- $\|g\|$, 84
- $E_{x \in A}(f(x))$, 224
- $E_{x \in \phi}(f(x))$, 22
- e_X, 193, 190
- exp, 157
- \tilde{F}_X, 68
- $F' \otimes F''$, 80
- $f(\gamma)$, 211
- $f[k]^*$, 38
- $f[k]$, 84
- f_{null}, 269, 270
- f_{null}, 269, 270
- f_{null}, 270
- C_0, 154
- g, 237
- $g(\alpha)$, 57
- \overline{g}, 237
- G^{\bullet}, 237
- $G^{\bullet+}$, 238
- ϕ_0, 153
- G_i, 112
- $g[k]$, 57, 95
- $G_i(\gamma)$, 105
- $G \times_{\phi} H$, 124
- $G(X)$, 137, 200
- $G(X, \mu, T)$, 137, 200
- l, 39
- $h + \Phi$, 330
- $[H, K]$, 111
- $H_{p_c}(G)(\xi)$, 260
- $H_{p_{c,e}}(G)$, 250
- $H_{p_{c,e}}(X)$, 250
- $H_{p_{c,e}}(G)$, 250
- $H_{p_{c,e}}(X)$, 250
- $I = (I_N)_{N \in \mathbb{N}^*}$, 439
- $I(T)$, 39
- $I(X, \mu, T)$, 39
- $I(T)$, 14
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I(T[k])$</td>
<td>119</td>
</tr>
<tr>
<td>\hat{K}</td>
<td>21</td>
</tr>
<tr>
<td>K_r</td>
<td>178</td>
</tr>
<tr>
<td>$\Lambda_{w,r}$</td>
<td>203</td>
</tr>
<tr>
<td>$A \ll B$</td>
<td>346</td>
</tr>
<tr>
<td>$A \ll_k B$</td>
<td>350</td>
</tr>
<tr>
<td>L_g</td>
<td>153</td>
</tr>
<tr>
<td>$\lim(X_i, T)$</td>
<td>43</td>
</tr>
<tr>
<td>$\lim X_i$</td>
<td>43</td>
</tr>
<tr>
<td>$\lim(X_i, \mu_i, T)$</td>
<td>43</td>
</tr>
<tr>
<td>\log</td>
<td>158</td>
</tr>
<tr>
<td>$\text{MPT}(X, \mu)$</td>
<td>117</td>
</tr>
<tr>
<td>$M(X, X')$</td>
<td>119</td>
</tr>
<tr>
<td>$m[k]_G$</td>
<td>59</td>
</tr>
<tr>
<td>$m_{\text{MPT}}(X)$</td>
<td>260</td>
</tr>
<tr>
<td>m_s</td>
<td>52</td>
</tr>
<tr>
<td>$M_T(X)$</td>
<td>52</td>
</tr>
<tr>
<td>$\mu^{[1]}$</td>
<td>114</td>
</tr>
<tr>
<td>$\mu_1 \times Y \mu_2$</td>
<td>41</td>
</tr>
<tr>
<td>$\mu^{[2]}$</td>
<td>114</td>
</tr>
<tr>
<td>$\mu \circ \pi^{-1}$</td>
<td>165</td>
</tr>
<tr>
<td>$\mu \times \tau(T)^H$</td>
<td>113</td>
</tr>
<tr>
<td>$\mu^{[3]}$</td>
<td>118, 197</td>
</tr>
<tr>
<td>$\mu^{[4]} \times \tau(T^{[k]} \mu^{[k]})$</td>
<td>119</td>
</tr>
<tr>
<td>m_X</td>
<td>100</td>
</tr>
<tr>
<td>$m_X^{[k]}$</td>
<td>107</td>
</tr>
<tr>
<td>$m_Z^{[k]}$</td>
<td>207</td>
</tr>
<tr>
<td>$m_Z^{[1]}$</td>
<td>207</td>
</tr>
<tr>
<td>m_Z</td>
<td>40</td>
</tr>
<tr>
<td>$[X]$</td>
<td>222</td>
</tr>
<tr>
<td>$N(X)$</td>
<td>235</td>
</tr>
<tr>
<td>$N^{(i)}$</td>
<td>228</td>
</tr>
<tr>
<td>$N^{(i)}_{\text{lip}}$</td>
<td>231</td>
</tr>
<tr>
<td>$U^{[k]}(1)$</td>
<td>592</td>
</tr>
<tr>
<td>$U^{[k]}(1')$</td>
<td>855</td>
</tr>
<tr>
<td>$U^{[k]}(X)$</td>
<td>380</td>
</tr>
<tr>
<td>$U^{[k]}(Z)$</td>
<td>380</td>
</tr>
<tr>
<td>$\mathbf{1}_I$</td>
<td>356</td>
</tr>
<tr>
<td>$\mathbf{1}_A$</td>
<td>13</td>
</tr>
<tr>
<td>$\mathbf{1}$</td>
<td>83</td>
</tr>
<tr>
<td>$\mathcal{O}(A)$</td>
<td>85</td>
</tr>
<tr>
<td>$O_k(A)$</td>
<td>85</td>
</tr>
<tr>
<td>$\sigma_N(1)$</td>
<td>85</td>
</tr>
<tr>
<td>$\sigma_r(\alpha)$</td>
<td>85</td>
</tr>
<tr>
<td>$\mathcal{O}(x)$</td>
<td>28</td>
</tr>
<tr>
<td>$\mathcal{O}(x)$</td>
<td>28</td>
</tr>
</tbody>
</table>

$PG_{X,Y}$ | 159 |
ϕ	103
ϕ_ν	199
ϕ_ν^\prime	21
$[\Psi, \Phi]$	154
π_k	260
$\pi(r)$	116
$\pi_{s \mu}$	164
$\pi(N)$	100
π_r	147
P_j	301
$\text{Poly}(G^*)$	238, 235
$\text{Poly}_k(G^*)$	235
$\text{Poly}_k(X, G^*)$	234
$\text{Poly}(X, G^*)$	185
ρ	320
τ_k	249
$\text{RP}^k(X)$	110
$S_{h, \phi}$	123
σ	123
ψ	123
ω_i	92
σ_{c}	85
σ_{d}	85
$\delta(n)$	123
ω_{k-1}	123
$S^{(k)}$	123
$S^{([k])}$	55
$T^{(\alpha)}$	110
\mathbb{T}	248
T	245
TF	24
T_{ν}	123
$T_{[k]}$	119
$T_{[k]}^{\mu}$	119
INDEX OF SYMBOLS

427

$T^n, 27$
$T_n, 108$
$T^n f, 27$
$T_x, 27$

$\|\cdot\|_{U^k(G)}, 91$

$V_g, 81$

$\chi [11], 113$

$x^*, 86$

$x = (x_0, x^*), 86$

$x, 83$

$\mathcal{F}, 257, 258$

$\mathcal{X}, 313$

$x(\epsilon), 84$

$x, 84$

$\mathcal{X}^\mu, 13$

$(X, T), 27$

$x, 258$

$(X, \mathcal{X}), 14$

$x = (x', x''), 86$

$(X, \mathcal{X}, \mu), 13$

$(X, \mathcal{X}, \mu, T), 29$

$[x, y], 11$

$Z_0, 137$

$Z_1, 111$

$0, 53$

$\chi [k], 83$

$Z_k, 111, 137$

$Z_k, 131$

$Z_{\mu, k}, 137$

$Z_k (X), 111, 137$

$Z_k (X), 137$

$Z_N, 57$

$Z / N Z, 57$

$Z_r, 177$

$Z_s, 52$
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publication Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilpotent Structures in Ergodic Theory</td>
<td>Bernard Host and Bryna Kra</td>
<td>2018</td>
</tr>
<tr>
<td>Weak Convergence of Measures</td>
<td>Vladimir I. Bogachev</td>
<td>2018</td>
</tr>
<tr>
<td>Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations</td>
<td>N. V. Krylov</td>
<td>2018</td>
</tr>
<tr>
<td>Linear Holomorphic Partial Differential Equations and Classical Potential Theory</td>
<td>Dmitry Khavinson and Erik Lundberg</td>
<td>2018</td>
</tr>
<tr>
<td>Fourier and Fourier-Stieltjes Algebras on Locally Compact Groups</td>
<td>Eberhard Kaniuth and Anthony To-Ming Lau</td>
<td>2018</td>
</tr>
<tr>
<td>Applying the Classification of Finite Simple Groups</td>
<td>Stephen D. Smith</td>
<td>2018</td>
</tr>
<tr>
<td>Sugawara Operators for Classical Lie Algebras</td>
<td>Alexander Molev</td>
<td>2018</td>
</tr>
<tr>
<td>Hilbert Schemes of Points and Infinite Dimensional Lie Algebras</td>
<td>Zhenbo Qin</td>
<td>2018</td>
</tr>
<tr>
<td>Bounded Cohomology of Discrete Groups</td>
<td>Roberto Frigerio</td>
<td>2017</td>
</tr>
<tr>
<td>Topics in Hyperplane Arrangements</td>
<td>Marcelo Aguiar and Swapneel Mahajan</td>
<td>2017</td>
</tr>
<tr>
<td>Expanding Thurston Maps</td>
<td>Mario Bonk and Daniel Meyer</td>
<td>2017</td>
</tr>
<tr>
<td>Partial Dynamical Systems, Fell Bundles and Applications</td>
<td>Ruy Exel</td>
<td>2017</td>
</tr>
<tr>
<td>Alice and Bob Meet Banach</td>
<td>Guillaume Aubrun and Stanislaw J. Szarek</td>
<td>2017</td>
</tr>
<tr>
<td>Foundations of Arithmetic Differential Geometry</td>
<td>Alexandru Buium</td>
<td>2017</td>
</tr>
<tr>
<td>A Study in Derived Algebraic Geometry</td>
<td>Dennis Gaitsgory and Nick Rozenblyum</td>
<td>2017</td>
</tr>
<tr>
<td>Kolmogorov Complexity and Algorithmic Randomness</td>
<td>A. Shen, V. A. Uspensky, and N. Vereshchagin</td>
<td>2017</td>
</tr>
<tr>
<td>The Projective Heat Map</td>
<td>Richard Evan Schwartz</td>
<td>2017</td>
</tr>
<tr>
<td>Geometry and Dynamics in Gromov Hyperbolic Metric Spaces</td>
<td>Tushar Das, David Simmons, and Mariusz Urbański</td>
<td>2017</td>
</tr>
<tr>
<td>Homotopy of Operads and Grothendieck–Teichmüller Groups</td>
<td>Benoit Fresse</td>
<td>2017</td>
</tr>
<tr>
<td>An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings</td>
<td>Frederick W. Gehring, Gaven J. Martin, and Bruce P. Palka</td>
<td>2017</td>
</tr>
<tr>
<td>Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations</td>
<td>Jared Speck</td>
<td>2016</td>
</tr>
<tr>
<td>Beurling Generalized Numbers</td>
<td>Harold G. Diamond and Wen-Bin Zhang (Cheung Man Ping)</td>
<td>2016</td>
</tr>
<tr>
<td>Ramsey Theory for Product Spaces</td>
<td>Pandelis Dodos and Vassilis Kanellopoulos</td>
<td>2016</td>
</tr>
<tr>
<td>The Dynamical Mordell–Lang Conjecture</td>
<td>Jason P. Bell, Dragos Ghioca, and Thomas J. Tucker</td>
<td>2016</td>
</tr>
<tr>
<td>Persistence Theory: From Quiver Representations to Data Analysis</td>
<td>Steve Y. Oudot</td>
<td>2015</td>
</tr>
<tr>
<td>Grid Homology for Knots and Links</td>
<td>Peter S. Ozsváth, András I. Stipsicz, and Zoltán Szabó</td>
<td>2015</td>
</tr>
<tr>
<td>Fokker–Planck–Kolmogorov Equations</td>
<td>Vladimir I. Bogachev, Nicolai V. Krylov, Michael Röckner, and Stanislav V. Shaposhnikov</td>
<td>2015</td>
</tr>
</tbody>
</table>

For a complete list of titles in this series, visit the
Nilsystems play a key role in the structure theory of measure preserving systems, arising as the natural objects that describe the behavior of multiple ergodic averages. This book is a comprehensive treatment of their role in ergodic theory, covering development of the abstract theory leading to the structural statements, applications of these results, and connections to other fields.

Starting with a summary of the relevant dynamical background, the book methodically develops the theory of cubic structures that give rise to nilpotent groups and reviews results on nilsystems and their properties that are scattered throughout the literature. These basic ingredients lay the groundwork for the ergodic structure theorems, and the book includes numerous formulations of these deep results, along with detailed proofs. The structure theorems have many applications, both in ergodic theory and in related fields; the book develops the connections to topological dynamics, combinatorics, and number theory, including an overview of the role of nilsystems in each of these areas. The final section is devoted to applications of the structure theory, covering numerous convergence and recurrence results.

The book is aimed at graduate students and researchers in ergodic theory, along with those who work in the related areas of arithmetic combinatorics, harmonic analysis, and number theory.