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Preface

This book is an introduction to Hopf algebras in braided monoidal categories
with applications to Hopf algebras in the usual sense, that is, in the category of
vector spaces. By now there exists a wide variety of deep results in this area, and
we don’t aim to provide a complete overview. We will discuss some of these topics
in Chapter 17.

Our main goal is to present from scratch and with complete proofs the theory of
Nichols algebras (or quantum symmetric algebras) and the surprising relationship
between Nichols algebras and (generalized) root systems. Hopefully our book makes
the vast literature in the area more accessible, and it is useful for future research.

Since its beginnings some 70 years ago, the theory of Hopf algebras has de-
veloped rapidly into various directions. Its origins came from algebraic topol-
ogy, algebraic and formal groups, and operator algebras. The influential book
of Sweedler from 1969 [Swe69] laid the foundations of a general theory of ab-
stract (non-commutative and non-cocommutative) Hopf algebras. After the work
of Drinfeld and Jimbo on quantum groups, and Drinfeld’s report “Quantum groups”
[Dri87] at the International Congress of Mathematicians 1986, the interest in the
topic drastically increased.

Quantum groups are prominent examples of pointed Hopf algebras (their irre-
ducible comodules are one-dimensional). Several years after their discovery, general
classification results for pointed Hopf algebras were obtained ([AS02]; [AS04],
[AA08], [AS10] depending on [Ros98], [Kha99], [Hec06], [Hec08]). In these
papers, the classical theory of quantum groups and of the small quantum groups
as developed in [Lus93] is applied.

Although quantum groups are intrinsically related to Lie theoretical structures,
it is not at all obvious to which extent this is true for general pointed Hopf algebras.
The lifting method introduced in [AS98] showed that the classification of Nichols
algebras is an essential step in the classification theory of pointed Hopf algebras.
And here, in the theory of Nichols algebras, the combinatorics of root systems and
Weyl groups, or better Weyl groupoids, plays an important role. Weyl groupoids
were introduced in [Hec06] for diagonal braidings using Kharchenko’s PBW basis
[Kha99] based on the theory of Lyndon words, and in [AHS10] in general.

Nichols algebras as a special class of braided pointed Hopf algebras are studied
in great detail in this book. They appeared first in [Nic78], independently as
braided algebras in [Wor89]. It follows from the work of Lusztig [Lus93] that
U+
q (g), g symmetrizable Kac-Moody Lie algebra, q transcendental, is a Nichols

algebra; see [Ros98] (where a dual description of Nichols algebras as quantum
shuffle algebras is used), [Gre97], and [Sch96].

xi



xii PREFACE

We emphasize categorical constructions and one-sided coideal subalgebras. The
introduction of Nichols systems, which are generalizations of Nichols algebras to-
gether with a grading by a free abelian group, allows us to develop the theory in
a very general setting. We do not use the theory of Lyndon words, and we do
not assume results from quantum groups. Our theory can be applied to quantum
groups, and some of our results on right coideal subalgebras are new also in the
special case of quantum groups.

Prerequisites. The reader is expected to be familiar with linear algebra and
algebra on the graduate level including tensor products of modules, basic non-
commutative algebra, and the language of categories, functors, and natural trans-
formations. For a better understanding, a course in semisimple Lie algebras would
be helpful but is not strictly necessary.

We now describe the contents of the book in more detail.

(1) Foundations. We begin in Chapter 1 with a quick introduction to Nichols
algebras. Our goal is to give a complete exposition of the basics of Nichols algebras
which are scattered over various papers.

The most important example of a braided monoidal category in this book is the
category H

HYD of Yetter-Drinfeld modules over some Hopf algebra H with bijective
antipode. If H = kG is the group algebra of a group G over a field k, then an
object in H

HYD is a G-graded vector space V =
⊕

g∈G Vg with a G-action such that

for all g, h ∈ G, g · Vh = Vghg−1 . The braiding cV,W between objects V,W ∈ H
HYD

is given by

cV,W : V ⊗W → W ⊗ V, v ⊗ w �→ g · w ⊗ v, v ∈ Vg, w ∈ W.

The maps cV,W are G-graded and G-linear, where the monoidal structure is given
by the usual grading and diagonal action on the tensor product V ⊗W . For any
object V ∈ H

HYD, the Nichols algebra B(V ) is defined as follows. We want an
N0-graded Hopf algebra R in the braided category H

HYD in which the elements of
V are primitive and generators of the algebra. Moreover, R should be minimal in
the sense that there are no other primitive elements than those in V . Of course,
the tensor algebra T (V ) is an N0-graded Hopf algebra generated by V , where the
elements of V are primitive. But in general there are more primitive elements in
higher degrees. We define the Nichols algebra B(V ) by

B(V ) = T (V )/I(V ), I(V ) the largest coideal in degree ≥ 2.

This is an N0-graded braided quotient Hopf algebra of the tensor algebra. Thus the
Nichols algebra is defined by a universal property, which means that it is very often
quite difficult to really compute B(V ). In Corollary 1.9.7 we prove that the relations
of the Nichols algebra can be described by the quantum symmetrizer maps defined
by the action of the braid group. This is an important theoretical result. However,
it does not immediately help, for example, to decide which Nichols algebras are
finite-dimensional.

Let A be a Hopf algebra whose coradical A0 = H is a Hopf subalgebra, and
let grA be the associated N0-graded Hopf algebra with respect to the coradical
filtration. Then the Nichols algebra over H appears naturally as a subalgebra of
grA (see Corollary 7.1.17). Hence Nichols algebras are essential for the classification
problem of such Hopf algebras A.
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Chapter 2 is a collection of fairly standard results in the theory of Hopf algebras
which we will need later on or which motivate more general constructions later.

In Chapter 3 the theory of Hopf algebras in braided (strict) monoidal cate-
gories C is presented, partly with new proofs. To our knowledge, this theory didn’t
appear so far in a textbook. Sections 3.8 and 3.10 contain detailed proofs of the
Radford-Majid-Bespalov theory of bosonization and Hopf algebras with a projec-
tion in braided categories. Theorem 3.10.6 on left and right coinvariant subobjects
seems to be new; it is used to prove the existence of the Hopf algebra isomorphism T
in Theorem 12.3.3, which in this book plays the role of the Lusztig automorphisms
of quantum groups.

In Chapter 4 we specialize Chapter 3 to the braided category H
HYD. By The-

orem 4.4.11, a finite-dimensional Hopf algebra in H
HYD has bijective antipode and

is a Frobenius algebra. This was shown in the pioneering paper [LS69] for usual
Hopf algebras.

In Chapter 5 a fairly general theory of filtrations by abelian monoids is pre-
sented, which will be applied in particular to Nθ

0, θ ≥ 2, to obtain appropriate
gradings of Nichols algebras. In addition we study the coradical filtration assuming
standard results from the theory of the Jacobson radical of algebras.

Chapters 6 and 7 deal with general braided vector spaces and their Nichols
algebras. They are rather independent of the remaining parts of the book. In
Corollary 7.2.8 we establish the fundamental non-degenerate pairing betweenB(V ∗)
and B(V ), where V is a finite-dimensional object in H

HYD.
In Chapter 8 we discuss quantized enveloping algebras and, more generally,

linkings of Nichols algebras. We define Hopf algebras U(D, λ) which generalize the
quantum groups Uq(g); they are given by the Serre relations in each connected com-
ponent of the Dynkin diagram and linking relations such as the relations between
the Ei and Fi for quantum groups (introduced in [AS02]).

(2) The main motivating problem. Lusztig in [Lus93] defines the positive
part U+

q of the deformed universal enveloping algebra of a Kac-Moody Lie algebra
by a universal property which is easily seen to be an alternative description of the
Nichols algebra of the degree one part V of U+

q . In this case V is a Yetter-Drinfeld
module over the group algebra of a free abelian group G with basis K1, . . . ,Kn,
and

V =
n⊕

i=1

kEi, Ei ∈ VKi
, Ki · Ej = qdiaij for all i, j.

Here, q is not a root of unity, and (diaij)1≤i,j≤n is the symmetrized Cartan matrix.
(In Lusztig’s book, q is transcendental, and char(k) = 0.) The Nichols algebras
of the summands kEi are simply polynomial algebras in the variable Ei. Much
later in his book, Lusztig shows that U+

q is explicitly given by the quantum Serre
relations.

Assume more generally that

V =
θ⊕

i=1

Mi ∈ H
HYD

is a finite direct sum of finite-dimensional irreducible objects Mi ∈ H
HYD, where

H is a Hopf algebra with bijective antipode. If H is the group algebra of a finite
group, and if the characteristic of the field does not divide the order of the group,
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then any finite-dimensional object V in H
HYD is semisimple. The Nichols algebra

B(V ) has an additional important structure. It is an Nθ
0-graded Hopf algebra in

H
HYD. We denote the standard basis of Zθ by α1, . . . , αθ, and define the degree of
Mi as αi. Suppose we know the B(Mi). Which additional information is needed
to understand B(V )? For example, when is B(V ) finite-dimensional? Is there an
analog of Lusztig’s PBW-basis depending on the longest element in the Weyl group
of a semisimple Lie algebra?

Note that in our general situation no Cartan matrix is given a priori. The key to
the missing information will be the root system and the Weyl groupoid of the tuple
M = (M1, . . . ,Mθ). We define the Nichols algebra of the tuple by B(M) = B(V ).

(3) The combinatorics of Cartan graphs and their Weyl groupoids.
This is a generalization of the notion of a Cartan matrix and its Weyl group to a
family of Cartan matrices. Right now there are several approaches to this theory.
Nevertheless we restrict ourselves in Part 2 of the book to a presentation based
on families of Cartan matrices, since this approach appears to be most useful to
explain the combinatorics in the theory of Nichols algebras. Part 2 is independent
of the theory of Nichols algebras.

Let θ ≥ 1 be a natural number, I = {1, . . . , θ}, X a non-empty set, (ri)i∈I

a family of maps ri : X → X , and (AX)X∈X a family of (generalized) Cartan
matrices. The quadruple G = G(I,X , (ri), (A

X)) is called a semi-Cartan graph
if the following axioms hold.

(CG1) For all i ∈ I, r2i = idX .

(CG2) For all i ∈ I, X ∈ X , AX and Ari(X) have the same i-th row.
For all X ∈ X and i ∈ I let sXi ∈ Aut(Zθ) be the reflection map defined by
sXi (αj) = αj − aXijαi for all j ∈ I. Let W(G) be the groupoid with objects X
and morphisms generated by formal maps sXi : X → ri(X). Composition of such
morphism is given by multiplication in Aut(Zθ). Note that W(G) is a groupoid (a

category where every morphism is an isomorphism), since s
ri(X)
i is inverse to sXi .

The real roots of X are the elements in Zθ which can be written as w(αi) for some
morphism w : Y → X and i ∈ I (w(αi) = f(αi), where w is given by f ∈ Aut(Zθ)).

The axioms of a semi-Cartan graph are not yet strong enough to be useful. For
example, we want that the real roots are positive or negative, that is, in Nθ

0 or in
−Nθ

0. We define in Definition 9.1.14 a Cartan graph by two additional axioms
(CG3) and (CG4). If G is a Cartan graph, we call W(G) the Weyl groupoid of
G. The importance of the axioms of a Cartan graph G comes from Theorem 9.4.8,
where we show that the Weyl groupoid of a Cartan graph G is aCoxeter groupoid
(in a different language this is a result of [HY08]), that is, the Weyl groupoid has
defining relations of the same type as Coxeter groups have.

Most of the results in Part 2 have been already published in [HY08], [CH09b],
[CH09a], and [CH12]. However, in Section 9.2 we present new axioms (CG3’) and
(CG4’) of a Cartan graph in terms of reduced sequences. These axioms are those
appearing most naturally for semi-Cartan graphs of Nichols systems.

(4) The Cartan graph of a Nichols algebra. Let M = (M1, . . . ,Mθ) as
above. First we have to define reflection operators on tuples of Yetter-Drinfeld
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modules. For each i ∈ I let Ri(M) = (M ′
1, . . . ,M

′
θ), where

M ′
j =

{
M∗

i if j = i,

(adMi)
−aM

ij (Mj) if j �= i,

and where we assume that aMij = −max{m ∈ N0 | (adMi)
m(Mj) �= 0} exists. The

i-th component is the dual Yetter-Drinfeld module M∗
i , and ad is the braided

adjoint action in the Nichols algebra B(M) = B
(⊕θ

i=1 Mi

)
. By Lemma 13.4.4,

(aMij )i,j∈I is a (generalized) Cartan matrix, when we set aMii = 2. By Corol-
lary 13.4.3, the components of Ri(M) are again irreducible. Note the formal simi-
larity with Lusztig’s isomorphisms Ti of quantum groups, where

Ti(Ej) =

{
−FiKi if j = i,

(adEi)
(−aij)(Ej) if j �= i.

The set of points X of G(M) is the set of isomorphism classes of all Rin · · ·Ri1(M),
n ≥ 0, which we assume to exist. We have attached to each X = [M ] ∈ X a Cartan
matrix AX = (aMij )i,j∈I, and we have defined maps ri : X → X , [M ] �→ [Ri(M)]
([M ] denotes the isomorphism class of M). By Theorem 13.6.2, G(M) is a semi-
Cartan graph. This result was first obtained in [AHS10] with a different proof.

In order to implement the remaining axioms of a Cartan graph, sequences of
graded right coideal subalgebras of Nichols algebras and their compatibility with
reflections are studied in Chapter 14. Important results in this respect are Theo-
rem 14.1.4, and in particular Theorem 14.1.9. The latter relates sequences of right
coideal subalgebras of Nichols algebras to reduced sequences in the semi-Cartan
graph. In Section 14.2 we introduce the notion of an exact factorization of bial-
gebras and Nichols systems. With this tool we prove in Theorem 14.2.12 that the
semi-Cartan graph of a Nichols algebra admitting all reflections is indeed a Cartan
graph. This is a new result; it was first shown in [HS10b] for finite semi-Cartan
graphs G(M). It is more general than what was shown in the existing approaches,
where the root system of the Nichols algebra, usually based on the theory of Lyndon
words, was assumed.

(5) Categorical tools, and the role of the Lusztig isomorphisms. The
proofs of these results on the Cartan graph G(M) depend on Chapters 12 and 13.

For all i ∈ I, let K
B(M)
i be the set of right coinvariant elements of the canonical

projection B(M) → B(Mi). By the braided version of the Theorem of Radford

on projections of Hopf algebras, K
B(M)
i is a Hopf algebra in the braided category

B(Mi)
B(Mi)

YD(C)rat, where C = H
HYD, and B(M) is isomorphic to the smash product

Hopf algebra K
B(M)
i #B(Mi). In Theorem 12.3.2 (which first appeared in [HS13b]

in an equivalent version and with a very different proof) we show that there is a
braided isomorphism

(Ω, ω) :
B(Mi)
B(Mi)

YD(C)rat → B(M∗
i )

B(M∗
i )
YD(C)rat.

Hence Ω(K
B(M)
i ) is a Hopf algebra in

B(M∗
i )

B(M∗
i )
YD(C)rat, and we may consider its

bosonization Ω(K
B(M)
i )#B(M∗

i ). By Theorem 13.4.9, this bosonization is isomor-
phic to B(Ri(M)). The deeper results on B(Ri(M)) depend on this isomorphism.
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Theorem 12.3.3 is another categorical result on the isomorphism (Ω, ω). It
implies a very close relationship between B(M) and B(Ri(M)). There is an isomor-
phism of braided Hopf algebras

T
B(M)
i : L

B(Ri(M))
i → K

B(M)
i

between the left coinvariants L
B(Ri(M))
i of the projection

B(Ri(M)) ∼= Ω(K
B(M)
i )#B(M∗

i )→ B(M∗
i )

and the right coinvariants (K
B(M)
i )cop of B(M). To make sense, this Hopf algebra

isomorphism has to be understood in the formulation of Theorem 12.3.3 which did
not appear in print before.

The isomorphisms T
B(M)
i play the role of the Lusztig automorphisms to con-

struct a PBW basis of U+
q . Since the maps T

B(M)
i can be seen as isomorphisms

of Hopf algebras, they can be used in Theorem 14.1.9 to construct right coideal
subalgebras in B(M) stepwise (Lusztig’s isomorphisms are maps of algebras not of
coalgebras).

If the Cartan graph G(M) is finite, that is, there are only finitely many real
roots, then we obtain by this procedure in Corollary 14.5.3 a tensor decomposition

B(Mβm
)⊗ · · · ⊗ B(Mβ1

) ∼= B(M),(0.0.1)

depending on the longest element in Hom(W(M), [M ]), where Mβm
, . . . ,Mβ1

are
irreducible subobjects of B(M) in H

HYD which correspond to the higher root vectors
of quantum groups, and deg(Mβi

) = βi ∈ Nθ
0 for all i. For all 1 ≤ l ≤ m, the image

of B(Mβl
)⊗ · · · ⊗ B(Mβ1

) in B(M) is a right coideal subalgebra.
Assume that the components Mi of M are one-dimensional. Then the Mβl

in
(0.0.1) are one-dimensional, the algebras B(Mβl

) are polynomial rings or truncated
polynomial rings. Thus we have constructed a PBW basis of B(M). In particular,
we obtain Lusztig’s PBW basis of U+

q (g), g a semisimple Lie algebra, without any
case by case considerations; see also Remark 16.2.6. The Levendorskii-Soibelman
commutation relations are also shown in the general context of Nichols algebras
over any field; see Theorem 14.1.12 and Theorem 16.3.16.

In Corollary 14.5.3 we prove that G(M) must be finite if B(M) is finite-
dimensional.

Assume that G(M) is finite. In Corollary 14.6.8 we prove that the construction
of right coideal subalgebras mentioned above defines a bijection

Hom(W(M), [M ])→ K(B(M))

between morphisms in the Weyl groupoid ending in [M ] and the set of all graded
right coideal subalgebras of B(M). Kharchenko [Kha11] conjectured that the num-
ber of such right coideal subalgebras in U+

q (g) (for simple Lie algebras) is equal to
the order of the Weyl group. Our work on right coideal subalgebras in [HS13a]
was motivated by this conjecture, which is now proved as a special case of Corol-
lary 14.6.8. As a novelty, in Theorem 14.6.6 we generalize the correspondence in
Corollary 14.6.8 to tuples with not necessarily finite Cartan graph.

The categorical results in Chapter 12 are very general. They can be applied to

any Hopf algebra K in
B(Mi)
B(Mi)

YD(C)rat, not just to K
B(M)
i . This leads to a new and

substantial extension of the theory of Nichols algebras in Section 13.5. There we
introduce Nichols systems and define reflection operators for Nichols systems. The
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stepwise construction of right coideal subalgebras in Section 14.1 works for Nichols
systems.

We use Nichols systems to establish criteria when a given pre-Nichols algebra
is Nichols. By Theorem 14.5.4, any pre-Nichols system admitting all reflections
and having a finite Cartan graph is in fact a Nichols algebra. Theorem 14.5.4 is
fundamental for several proofs later on in the book. We would like to highlight The-
orem 15.5.1 (finite-dimensional pre-Nichols algebras of diagonal type are Nichols),
Theorem 16.2.5(2) (the positive part U+

q of a quantum group attached to a Cartan
matrix of finite type, q not a root of 1, is a Nichols algebra), Theorem 16.4.23(2) (a
pre-Nichols algebra with finite Gelfand-Kirillov dimension of a braided vector space
of quasi-generic Cartan type is the Nichols algebra U+

q ), and Corollary 16.4.24 (a
braided vector space of diagonal type with a Nichols algebra being a domain of
finite Gelfand-Kirillov dimension is quasi-generic of finite Cartan type); see below
for more details.

(6) Applications. After some basic observations on reflections of Yetter-
Drinfeld modules of diagonal type in Section 15.1, we study root vector sequences
in pre-Nichols systems. In the special case of usual quantum groups, the root vec-
tors of Lusztig are shown later in Remark 16.2.6 to form root vector sequences.
This has advantages for both approaches: Lusztig’s root vectors satisfy integrality
properties, and root vector sequences are defined by defining properties which can
be used to develop new methods (such as braided commutators associated to Lyn-
don words) to construct them. Further important differences in the two approaches
to quantum groups are that our root vectors are only unique up to scalar multi-
ples, we don’t use an analog of the braid relations for Lusztig’s automorphisms,
and we don’t need to perform case by case analysis (except in Remark 16.2.6 to
prove the correspondence). Note that root vector sequences, similarly to Lusztig’s
root vectors, are defined for any reduced decomposition of an element of the Weyl
group(oid).

Using root vector sequences, Theorem 15.2.7 describes a basis of any right
coideal subalgebra of a Nichols system attached to a reduced decomposition of an
element of the Weyl groupoid.

Following [HW15], in Theorem 15.3.1 we classify two-dimensional braided vec-
tor spaces of diagonal type which have a finite Cartan graph, where the field k has
characteristic 0. This classification uses explicitly the combinatorics of finite Cartan
graphs of rank two from Section 10.3. The classification in [Hec09] of all finite-
dimensional braided vector spaces of diagonal type and with finite Cartan graph is
beyond the scope of this book.

Angiono in [Ang15] (using the results on right coideal subalgebras in Corol-
lary 14.6.8) and [Ang13] found a celebrated presentation of the Nichols algebras
appearing in [Hec09] in terms of generators and relations, where the ground field
is algebraically closed of characteristic 0.

A conjecture in [AS00a] says that any finite-dimensional pointed Hopf algebra
H over an algebraically closed field of characteristic 0 is generated as an algebra
by group-like and skew-primitive elements. In Theorem 15.5.1 we prove that finite-
dimensional pre-Nichols algebras of diagonal type over a field of characteristic 0 are
Nichols algebras. This proves the conjecture when the group of group-like elements
of H is abelian. This theorem was originally proved by I. Angiono in [Ang13]
using his list of defining relations of the finite-dimensional Nichols algebras classified
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in [Hec09]. In contrast, our proof is based on the aforementioned Theorem 14.5.4
and some results in rank two and partially in rank three.

In Chapter 16, especially in Theorems 16.2.5 and 16.3.17, we recover the results
of Angiono on generators and relations for Nichols algebras of finite Cartan type
(which include the algebras studied by Lusztig when the Cartan matrix is of finite
type) except for a few cases with parameters of small order. In the discussed cases
the Nichols algebras are presented by the quantum Serre relations and by root vector
relations. The proof of Theorem 16.2.5, where the braiding matrix is quasi-generic,
is a more or less direct application of Theorem 14.5.4. A proof of Theorem 16.3.17
along the same line, where the entries of the braiding matrix are roots of unity,
appears to be problematic since the root vector relations depend on the choice of
a presentation of the longest element of the Weyl group. Instead, we provide first
in Theorem 16.3.14 a basis of the Hopf algebra U+

q defined by the quantum Serre
relations by analyzing root vector sequences. This together with an easy dimension
argument yields the claim.

It is known that for the excluded exceptional cases additional defining relations
are needed.

In Section 16.4 we study Nichols algebras of diagonal type, which are domains
of finite Gelfand-Kirillov dimension. By Corollary 16.4.24, these are the Nichols
algebras of finite Cartan type, where the diagonal entries of the braiding are 1 (only
in characteristic 0) or not roots of 1.

In Theorem 16.5.10 we show that the pointed Hopf algebras with abelian corad-
ical, generic infinitesimal braiding, and finite Gelfand-Kirillov dimension are exactly
the Hopf algebras U(D, λ) defined in Section 8.3 generalizing the quantum groups
Uq(g). This was shown in [AS04] for positive braidings using [Ros98], and ex-
tended in [AA08] to the general case using [Hec06].

In Chapter 17 Nichols algebras over non-abelian groups are studied. Among
others we prove in Corollary 17.1.5 (partly following [HS10b]) that the Nichols
algebra of a non-zero non-simple Yetter-Drinfeld module over a finite simple group
is necessarily infinite-dimensional. A similar result for the symmetric groups Sn
with n ≥ 3 is shown in Corollary 17.1.8.

The theory of reflections does not give direct information about Nichols alge-
bras of irreducible Yetter-Drinfeld modules over groups. However, it can be helpful
to prove that a given Nichols algebra of an irreducible Yetter-Drinfeld module is
infinite-dimensional by finding a braided subspace which can be realized over some
other group with decomposable Yetter-Drinfeld module and which has infinite-
dimensional Nichols algebra. This is demonstrated in Corollary 17.1.11 which led
to the definition of racks of type D. The rack theoretical formulation of Corol-
lary 17.1.11 (finite racks of type D collapse) was used for example in [AF+11a]
to show that any finite-dimensional pointed Hopf algebra H over C with group
G(H) ∼= An, n ≥ 5, is isomorphic to the group algebra CAn of the alternating
group. (Racks of type D were not used for A5.)

We collect the known finite-dimensional examples of Nichols algebras of ir-
reducible Yetter-Drinfeld modules over groups in characteristic 0 in Section 17.2
without proofs. Finally, in Section 17.3 the finite-dimensional Nichols algebras of
direct sums of two simple Yetter-Drinfeld modules are listed without proof; this clas-
sification uses the finiteness of the corresponding Cartan graph by Corollary 14.5.3.
For references, see Chapter 17.
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In the notes in the end of each chapter we refer to the relevant literature. We
do this to the best of our knowledge, and we apologize to all authors whose work
we have unintentionally not mentioned appropriately.
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Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés
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Gromov Hyperbolic Metric Spaces, 2017

217 Benoit Fresse, Homotopy of Operads and Grothendieck–Teichmüller Groups, 2017

216 Frederick W. Gehring, Gaven J. Martin, and Bruce P. Palka, An Introduction to
the Theory of Higher-Dimensional Quasiconformal Mappings, 2017

215 Robert Bieri and Ralph Strebel, On Groups of PL-homeomorphisms of the Real Line,
2016

214 Jared Speck, Shock Formation in Small-Data Solutions to 3D Quasilinear Wave
Equations, 2016

213 Harold G. Diamond and Wen-Bin Zhang (Cheung Man Ping), Beurling
Generalized Numbers, 2016



For additional information 
and updates on this book, visit

www.ams.org/bookpages/surv-247

This book is an introduction to Hopf algebras in braided monoidal categories 

with applications to Hopf algebras in the usual sense. The main goal of the book 

is to present from scratch and with complete proofs the theory of Nichols alge-

bras (or quantum symmetric algebras) and the surprising relationship between 

Nichols algebras and generalized root systems.

In general, Nichols algebras are not classified by Cartan graphs and their root 

systems. However, extending partial results in the literature, the authors were 

able to associate a Cartan graph to a large class of Nichols algebras. This allows 

them to determine the structure of right coideal subalgebras of Nichols systems 

which generalize Nichols algebras. As applications of these results, the book 

contains a classification of right coideal subalgebras of quantum groups and 

of the small quantum groups, and a proof of the existence of PBW-bases that 

does not involve case by case considerations. The authors also include short 

chapter summaries at the beginning of each chapter and historical notes at the 

end of each chapter.

The theory of Cartan graphs, Weyl groupoids, and generalized root systems 

appears here for the first time in a book form. Hence, the book serves as an 

introduction to the modern classification theory of pointed Hopf algebras for 

advanced graduate students and researchers working in categorial aspects 

and classification theory of Hopf algebras and their generalization.
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