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Introduction

Integrable models in field theory and statistical mechanics constitute a research
area that has made significant advances in the last few decades. Many of the deep
results are intimately related in one way or another to the understanding of local
operators of the model. The present book is aimed to expound upon the structure
of the space of local operators.

We start this introduction by some historical remarks, which are by no means
complete. Historical reviews at a more technical level will be given in the first
chapters of both Volume I and Volume II.

The theory of quantum integrable models has a dual origin.
The first discovery in the field is due to Bethe [Be] who proposed a method

for solving a one-dimensional model of isotropic magnet. This method is known
now as the Bethe Ansatz. Then comes the famous solution of the two-dimensional
Ising model by Onsager [O1]. Onsager also pointed out a deep relation between
two-dimensional classical statistical mechanics and one-dimensional quantum me-
chanics [O2]. This observation set Bethe’s and Onsager’s work into a common
perspective. The Bethe Ansatz technique was generalised and applied to various
other models, including the Bose gas with a δ function interaction. Using this
method, Yang and Yang [YY] investigated the thermodynamics. Onsager’s work
was further developed by Lieb [Li] and Sutherland [Su] who were able to solve the
ice model. Finally a giant step was taken by Baxter who solved the eight-vertex
and related models [Ba1], [Ba2], introducing novel machinery and thereby laying
the foundation for all further progress in the field [Ba3].

The second development came from the theory of soliton equations. The semi-
nal paper by Gardner, Greene, Kruskal, and Miura [GGKM] on the Korteweg-de
Vries (KdV) equation opened up the whole new subject of integrable non-linear
differential equations. Among important contributions are the work of Lax [La]
who reformulated the equation in terms of Lax pair, and of Faddeev and Zakharov
[ZF] who reinterpreted the KdV equation as a completely integrable Hamiltonian
system. Faddeev and Takhtajan [FT] found an integrable model of relativistic clas-
sical field theory, known now as the sine-Gordon (sG) model. There arose naturally
the issue of quantisation. Faddeev and Korepin [FK] successfully addressed the
semi-classical quantisation, revealing a striking feature of the model: the spectrum
includes solitons. These are excitations which correspond to non-trivial classical so-
lutions and yet do not require the introduction of additional fields, contrary to the
näıve particle-field correspondence. Coleman [C] and Mandelstam [Ma] explained
that solitons can be interpreted as fermions in the massive Thirring model. This was
the first occurrence of duality in Quantum Field Theory (QFT). Another unusual
feature of the model, discovered in [FK] by semi-classical quantisation, is that the

vii



viii INTRODUCTION

scattering matrices completely factorise. This property allowed the Zamolodchikov
brothers [ZaS,ZZ] to compute the S-matrices exactly by a bootstrap approach.

The Quantum Inverse Scattering Method (QISM) proposed by Faddeev,
Sklyanin, and Takhtajan [STF] synthesised these two major streams in the field of
integrable models (see also [KIB] for a review). The main achievement of QISM is
in the formulation of the Algebraic Bethe Ansatz (ABA). This method is based on
the notion of R-matrix, a mathematical abstraction of a set of Boltzmann weights
which plays a fundamental role in Baxter’s work. As it turned out, certain R-
matrices coincide with the factorised S-matrices of the Zamolodchikov brothers.
The only explanation for this coincidence would be that there are not so many
good mathematical objects around. The notion of R-matrix eventually gave birth
to the theory of quantum groups. After the first example found by Kulish and
Reshetikhin [KR], the general formulation was given by Drinfeld [Dr] and Jimbo
[Ji1].

The most complicated part of the theory of integrable models concerns the com-
putation of off-shell objects: form factors, correlation functions, etc. Achievements
in this direction include the following. For relativistic models of QFT, Smirnov
formulated a system of axioms for form factors, and solved the corresponding equa-
tions for a number of models [Sm]. Subsequently, correlation functions for the
six-vertex model (or equivalently, static correlation functions for the XXZ model)
were found by Jimbo, Miwa, and collaborators [JM]. The latter work relies heavily
on the theory of quantum groups. Surprisingly, form factors in Conformal Field
Theory (CFT) and correlation functions on the lattice are described by quite similar
(actually dual) equations, though the variables involved have completely different
meaning. This is yet another instance which indicates that good mathematical
structures are limited in number. Later on, using ABA, Kitanine, Maillet, and
Terras [KMT] generalised the results of [JM] to correlation functions for the XXZ
model with a magnetic field. Göhmann, Klümper, and Seel [GKS] managed fur-
ther generalisation to the case of finite temperature. The works [KMT,GKS] use
the determinant formula found much earlier by Slavnov [Sl]. All these formulas
for correlation functions are given in terms of multiple integrals which are hard to
investigate. It is all the more so in the last two cases where the integrand involves
certain functions which are not quite explicit.

We finish the historical part of Introduction by mentioning a series of papers by
Bazhanov, Lukyanov, and Zamolodchikov [BLZ1,BLZ2,BLZ3]. The construction
based on quantum groups proposed there was very important for us.

This monograph summarises results of our long effort on computing expecta-
tion values of local operators in integrable models [BJMST1,BJMST2,JMS1,
BJMS,JMS2]. It is not easy to discuss here the details of this work, so we prefer
rather to motivate the reader by demonstrating some examples of our results. We
shall consider two best known examples, one on the lattice and the other in the
continuum.

As an example of a lattice model, we choose the isotropic Heisenberg anti-
ferromagnet. Formally the Hamiltonian is written as

HXXX =
∞∑

j=−∞

3∑
a=1

σa
j σ

a
j+1 .
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To make sense of this formal definition, we start with a finite chain of 2L sites j =

−L+1, · · · , L. On the space
(
C2

)⊗2L
, we define operators σa

j given by conventional

Pauli matrices (see (1.2) below) acting non-trivially on the j-th copy of C2 and as
identity elsewhere. We impose the periodic boundary condition and take the limit
L→∞. Denote by |vac〉 the ground state, and consider the correlation functions

〈σ3
1σ

3
n〉 =

〈vac|σ3
1σ

3
n|vac〉

〈vac|vac〉 .

Long ago, Takahashi [T] found a nice formula for n = 3:

〈σ3
1σ

3
3〉 =

1

3
− 16

3
log 2 + 3ζ(3) ,

where ζ(s) is the Riemann zeta function. The appearance of a ζ-value is quite
remarkable. Later, Boos and Korepin [BK] managed to evaluate the multiple
integral formulas, obtaining

〈σ3
1σ

3
4〉 =

1

3
− 12 log 2 +

74

3
ζ(3)− 56

3
ζ(3) log 2− 6ζ(3)2

− 125

6
ζ(5) +

100

3
ζ(5) log 2 .

We shall see that this kind of formulas hold in general: 〈σ3
1σ

3
n〉 is a polynomial of

degree
[
n
2

]
of odd ζ-values with argument up to 2n − 3 (and log 2 as well) with

rational coefficients. This was confirmed by [SST] where the correlation functions
were computed up to n = 8. We compute them up to n = 11. For this value the
exact correlation function is already quite close to Lukyanov’s asymptotic prediction
[Lk1,LT]. We are also able to compute the entanglement density matrices, i.e., the
expectation values of all local operators, up to 10 sites. In the paper [BGKS]
evidence was given that the multiple integral formulas factorise even in the case of
finite temperature and magnetic field. This work gave an important impetus to our
study.

As an example of QFT, we consider the sine-Gordon model. The Hamiltonian
is

HsG =
1

4π

∫ ∞

−∞

[
∂0ϕ(x)

2 + ∂1ϕ(x)
2 + μ

(
1− cos(βϕ(x))

)]
dx ,

where ∂μ are derivatives with respect to space-time coordinates; we shall also use
∂± for the light-cone derivatives. The commutator of ϕ(x) and ∂0ϕ(x) is canonical.

The problem which we address here concerns the computation of one-point
functions of local operators:

〈O(0)〉 = 〈vac|O(0)|vac〉
〈vac|vac〉 ,

where |vac〉 is again the ground state. Lukyanov and Zamolodchikov [LZ] computed
the one-point functions for the operators eiaϕ(0) (primary fields). Though this is a
remarkable result, for application to perturbed CFT one needs to know one-point
functions of descendants as well. The simplest non-trivial result was found by
Fateev, Fradkin , Lukyanov, Zamolodchikov, and Zamolodchikov [FFLZZ]:

〈(∂+ϕ)2(∂−ϕ)2eiaϕ〉 = −m4F1(a)F1(−a)〈eiaϕ〉 ,
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where we omit the argument 0 writing ϕ instead of ϕ(0),

F2j−1(a) = ((j − 1)!)2γ
(2a− (2j − 1)β

2η

)
γ
( (2j − 1)β−1 − 2a

2η

)
,

η = β−β−1, and γ(x) = Γ(x)/Γ(1−x). The coupling constant μ has the dimension
of mass to the power 2 − 2β2 because of the anomalous dimension of cos(βϕ).

The mass scale m is proportional to μ
1

2(1−β2) with the proportionality coefficient
known exactly due to Al. Zamolodchikov [ZaA]. In general, the levels (number of
derivatives) for two light cone components (chiralities) must coincide due to Lorentz
invariance. The simplest case above has level 2. The next non-trivial case is one on
level 4. We shall see that there are two non-trivial expectation values. To describe
them introduce

Aε =
η−2

72

{(
3− 4a2(η2 + 2)

)
(∂εϕ)

4 + 12(1− η2)(∂2
εϕ)

2
}
,

Bε =
η−2

108
(β + β−1)

{
(3 + 4a2)(∂εϕ)

4 + 12(∂2
εϕ)

2)
}
,

where ε = ±. Then
〈(A+ + aB+)(A− + aB−)e

iaϕ〉 = m8F1(a)F3(−a)〈eiaϕ〉 ,
〈(A+ − aB+)(A− − aB−)e

iaϕ〉 = m8F1(−a)F3(a)〈eiaϕ〉 .
The second equation follows from the first one by C-symmetry.

We shall see that the general picture is as follows. Given a level L, we take two
sets I+, I− of distinct odd positive integers, which are equal in size, such that the
sum of elements of their union equals L. For such a datum, there is an operator of
level L in both chiralities whose expectation value equals

m2L
∏
j∈I+

Fj(a)
∏
j∈I−

Fj(−a) .

Thus we have a general method for exact computation of expectation values, both
on the lattice and in the continuum. The attractive feature is that it is based on
the same construction. Moreover our method allows a simple and straightforward
generalisation to the case of non-zero temperature, or even to that of the generalised
Gibbs ensemble.

Both the isotropic anti-ferromagnet and the sine-Gordon model can be consid-
ered as limits of the anisotropic XXZ magnet (inhomogeneous one in the second
case). Due to Onsager’s observation [O2], this magnet is closely related to the six-
vertex model. The main tool which we shall use is the fermionic basis. In order to
explain its meaning we invoke the analogy with CFT. In CFT, the space of all local
operators is organised into a direct sum of irreducible representations of the Vira-
soro algebra. This structure is decisive for obtaining many exact results. Similarly,
for spin chains we consider local observables, i.e., operators with finite supports.
The linear span of these operators does not look a very interesting object. However,
we manage to introduce on it the structure of a module created by one family of
bosonic operators and two families of fermionic operators. The fermionic basis thus
constructed has a great advantage that the expectation values for its elements are
simple— basically given by determinants. The main goal of Volume I is to explain
the construction and applications of the fermionic basis.

We now outline the contents of the present volume.
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In Chapter 1, we explain the formulation of the problem and introduce our
notation. We consider the six vertex model on an infinitely long cylinder with finite
circumference. We call the generatrix the Space direction and the circumference
the Matsubara direction. The main object of our study is the expectation values of
quasi-local operators. The latter are operators localised on a finite segment in the

Space direction having a half-infinite tail of the form qα
∑0

j=−∞ σ3
j ; see (1.9). We

explain how the expectation values thus formulated are related in various limits to
those at a finite temperature or at zero temperature on the infinite plane, as well
as to density matrix and entanglement entroy. We then explain our strategy to
evaluate the expectation values by introducing fermionic basis.

In Chapter 2, we prepare algebraic tools which will be extensively used in the
later Chapters. We begin with the basics of algebraic Bethe ansatz in theMatsubara

direction, algebra Uq(ŝl2) and the universal R-matrix. We then proceed to the
Bazhanov-Lukyanov-Zamolodchikov construction based on representations of the
q-oscillator algebra Osc. Used originally to construct Q-operators, this method is
indispensable for the construction of fermionic basis given in the next Chapter. We
also touch upon the Destri-de Vega integral equation for the distribution of Bethe
roots, which will become a convenient tool to handle the limit n → ∞ to infinite
Matsubara chain.

Chapter 3 is devoted to the construction of fermionic annihilation and creation
operators. Starting with the R-matrix whose auxiliary space is the tensor product
of oscillator and two-dimensional representations, we introduce certain operator
k(ζ, α) as a trace of monodromy matrix acting on operators on a finite interval.
The fermionic annihilation operators b(ζ, α), c(ζ, α) are defined from the singular
part of k(ζ, α). They are shown to anti-commute and are naturally extended to
the whole space of quasi-local operators. The bosonic creation operators t∗(ζ, α)
are simple to construct; they are basically the adjoint action by local integrals
of motion of the XXZ chain. In contrast, the construction of fermionic creation
operators b∗(ζ, α), c∗(ζ, α) is more elaborate. Their construction and derivation of
their properties, including the (anti-)commutation relations with the annihilation
operators, occupy Section 3.5 through Section 3.7. We give in particular the Russian
doll construction in Section 3.6 which allows us to express the creation operators in
the homogeneous chain compactly in terms of those of finite inhomogeneous chains.
Applying the creation operators to the primary field we obtain the fermionic basis
of quasi-local operators.

In Chapter 4, we combine the results of the preceding Chapters to prove the
main theorem. As a mathematical tool we introduce deformed Abelian differentials
and deformed Riemann bilinear identities. We prove the main theorem which states
that the expectation values of fermionic basis can be expressed in terms of two
functions, ρ(ζ|α) and ω(ζ, α). We show also that the fermionic operators indeed
create a basis of quasi-local operators on a homogeneous chain. We end this Chapter
explaining the relation of our construction to cohomologies of affine Jacobi varieties.

In Chapter 5, we discuss various applications of the fermionic construction. We
first rewrite the function ω(ζ, α) into a form suitable for taking the limit n → ∞.
The main theorem allows us to compute expectation values of physically interesting
operators, once we know their expression in the fermionic basis. We explain that
the main theorem can again be used as a practical tool for finding the relevant
coefficients. After examining the limit α→ 0, we present numerical computation of
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the entanglement entropy in the XXZ model. We also consider the RSOS reduction
corresponding to the minimal unitary series of CFT. We then present results for
the entanglement entropy and correlation functions in the XXX model at zero
temperature. Lastly we make a comment on the attempt to extend our approach
to the completely anisotropic XYZ model.

In the Appendix we discuss the quasi-classical limit, and explain the meaning of
our construction in the light of the theory of Abelian integrals. First we compute the
quasi-classical limit of the canonical differential discussed in Chapter 4, expressing
it in terms of differentials on a hyper-elliptic Riemann surface. We give a brief
summary of basic facts about Riemann surfaces. In the quasi-classical limit, the
algebra of local observables turn into the Poisson algebra generated by entries of
the classical monodromy matrix. Via separation of variables, the Jacobi inversion
formula allows us to express these matrix elements as meromorphic functions on the
affine Jacobi varieties. We show that the fermionic creation operators have purely
classical origin: on the top cohomology of the affine Jacobi variety, the operators
c∗j act by removing the first kind differentials and b∗

j by multiplying by the second
kind differentials.
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Notation

Chapter 1

1.2

q parameter q in the six vertex model, (1.1)
P permutation matrix, (1.3)
T 6v
j,M Matsubara monodromy matrix, (1.4)

T 6v
S,M monodromy matrix with Space and Matsubara directions, (1.5)

T 6v,κ
M Matsubara transfer matrix with twist, (1.8)

1.3

q2αS(0)O quasi-local operator, (1.9)

Z6v,κ
L,n expectation-value functional (finite chain) (1.10)

Z6v,κ
n expectation-value functional (infinite chain) (1.11)

1.4

Lj,m L operator (1.12)
R(ζ) R-matrix of 6 vertex model, (1.13)
Tκ
M(ξ, κ) Matsubara transfer matrix with spectral parameter and twist,

(1.18)

1.5

A(ξ1, . . . , ξl, α) reduced qKZ operator, (1.21), (1.22)
θ charge conjugation, (1.23)
Rj,j+1(ξj/ξj+1) adjoint action of R-matrix ,(1.25)

1.6

TS(ζ) Space transfer matrix (1.29)

R̃j,m(ζ) R̃ matrix (1.32)

Řj,m(ζ) Ř matrix (1.33)
Ip local Hamiltonians (1.37)

1.7

ρ(n, T ) density matrix, (1.49)
s(n, T ) entanglement entropy, (1.51)
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Chapter 2

2.1

A(ξ), B(ξ), C(ξ), D(ξ) entries of Matsubara monodromy matrix (2.1)
a(ξ), d(ξ) vacuum eigenvalues of A(ξ), D(ξ) (2.7)
|λ+

1 , . . . , λ
+
k 〉 Bethe vector for Matsubara transfer matrix (2.8), (2.93)

〈λ−
1 , . . . λ

−
n−k| Bethe covector for Matsubara transfer matrix, (2.13)

Q+(ξ, κ), Q−(ξ, κ) Q-functions (2.11),(2.15)
Mn(λ1, . . . λn|τ1, . . . , τn) domain wall partition function, (2.18), (2.20)

2.2

R universal R-matrix, (2.21),(2.22),(2.23),(2.24)
E, F , K generators of Uq(sl2), (2.25)
C Casimir element of Uq(sl2), (2.27),(2.30)
V Λ Verma module of Uq(sl2), (2.28)

2.3

ei, fi, ti generators of Uq(ŝl2), (2.32),(2.33),(2.34),(2.35)

Uqb
+, Uqb

− Borel subalgebras of Uq(ŝl2), p.37
evζ evaluation homomorphism, (2.43)

πΛ
ζ evaluation Verma representation of Uq(ŝl2), (2.45)

π
(2s)
ζ spin s representation of Uq(ŝl2), (2.45)

R(ev,1)(ζ) evaluation R-matrix with spin 1/2, (2.46)
Osc q-oscillator algebra, (2.49)
a, a∗, q±D generators of Osc, (2.49)
W± representations of Osc, (2.50)
R+

A(ζ), R
−
A(ζ) R-matrix with Osc as auxiliary space ,(2.53), (2.57)

Ra(ζ) R-matrix with π(1) as auxiliary space (2.55)
ŘA,B(ζ) intertwiner for W+

ζ1
⊗W+

ζ2
, (2.59),(2.61)

Aleft(ζ), Aright(ζ) (2.66), (2.71)
A(ζ) quotient algebra of Uq(sl2), (2.67)
Fa,A matrix of conjugation used for fused R-matrix (2.79)

2.4

HM Matsubara space with arbitrary spin representations, (2.80), (2.81)
R(ev,2s)(ζ) evaluation R-matrix with spin s, (2.82)
R(+,2s)(ζ) R-matrix in oscillator and spin s representations, (2.84)

Aleft
loc (ζ), A

right
loc (ζ) localisation of algebras Aleft(ζ), Aright(ζ), Definition 2.7

a(ξ) ,d(ξ) functions a(ξ), d(ξ) for general spin, (2.93)

2.5

Q±
M(ζ, κ) Q-operators, (2.102)

W (ξ) scalar function in the Wronskian identity, (2.109), (2.110)
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2.6

a(ζ|κ) unknown function in DdV equation, (2.111)
K0(ζ) kernel function in DdV equation, (2.113)
R0(ζ) resolvent kernel in DdV equation, (2.115)

Chapter 3

W , Wα,s space of quasi-local operators, (3.1)
Wα block α of W , (3.4)

3.1

R+
{a,A}(ζ) fusion of oscillator and spin 1/2 R-matrix, (3.5)

R{a,A},{b,B}(ζ) R-matrix intertwining fused spaces, (3.6)
F{a,A},{b,B}(ζ) quasi R-matrix, (3.8)

3.2

Taux,J (ζ) adjoint monodromy matrix, (3.10)
Raux,j(ζ) adjoint R-matrix, (3.11)
T{a,A},J (ζ) fused monodromy matrix, (3.13)
T{a,A},J (ζ, α) fused adjoint monodromy matrix, (3.15)
kJ(ζ, α) operator k(ζ, α) on interval J , (3.16),(3.17)
Δζ q-difference operator, (3.20)
vJ(ζ, α) operator v(ζ, α) on interval J , (3.22)
φ spin reversal operation on operators, Definition 3.6
ψ(ζ, α) Cauchy kernel, (3.30)
qJ(ζ, α) adjoint Q-operator, (3.35)

3.3

cJ (ζ, α) annihilation operator c on J , (3.38)
cJ(ζ, α) annihilation operator c on J , (3.39)
c(ζ, α) annihilation operator c, (3.42)
b(ζ, α) annihilation operator b, (3.43)

3.4

t∗J (ζ, α) creation operator t∗ on J , (3.52)
ri,j(ζ

2) ‘tail’ of adjoint R-matrix, (3.54)
t∗(ζ, α) creation operator t∗, (3.59)

3.5

fJ (ζ, α) operator f∗ on J , (3.67)
frat,J (ζ, α) rational version of fJ , (3.69)

Δ−1
ζ ψ(ζ, α) q-primitive of ψ(ζ, α), (3.72)

b∗
J(ζ, α) creation operator b∗ on J , (3.74)

gc,L(ζ, α) operator g on L, (3.75)
b∗(ζ, α) creation operator b∗, (3.85)
c∗(ζ, α) creation operator c∗, (3.87)
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3.6

gε
j(ξj , α) Russian-doll operators, (3.90), (3.92)

xε∗(ζ) combined notation for creation operators, (3.95)
b∗
rat(ζ) rational version of b∗, (3.109)

DζF (ζ) q-Laplacian (operator version), (3.110)

3.8

bp, cp Fourier components of annihilation operators (3.124)
b∗
p, c

∗
p, t

∗
p Fourier components of creation operators (3.125), (3.126), (3.127)

Chapter 4

4.2

ϕ(ζ) logarithmic q-primitive of a(ζ)/d(qζ), (4.12),(4.13)
dμ±(ζ) measures used for deformed Abelian differentials, (4.14)
ρ(ζ|α) ratio of transfer matrix eigenvalues, (4.16)
δ−ζ q-difference operator, (4.17)

Eζ

(
g±(ζ)

)
exact form, (4.19)

r(ζ, ξ), r+(ζ, ξ), r−(ξ, ζ) generating functions of deformed Abelian
differentials, (4.22)

Ω±
m(ζ), Ω̃±

m(ζ) deformed Abelian differentials, (4.27)
A±

i,j, B
±
i,j deformed period matrices, (4.28)

ω(ζ, ξ|α) function ω, (4.35)
ωsing(ζ, ξ|α) singular part of ω, (4.35)

4.3

grat(ζ, α) rational version of g(ζ, α), (4.51)

4.4

t̄∗(ζ) dual version of t∗(ζ), (4.70), (4.71)
b̄∗(ζ), c̄∗(ζ) dual version of b∗(ζ), c∗(ζ), (4.72)
s(ζ, α) spin 2 annihilation operator, (4.77), Remark 4.27
Bn(α) basic operator supported on [1, n], (4.78), (4.79)
sp Fourier components of s(ζ, α), (4.80)
ym operators used to describe quasi-local operators of given length, (4.88)

Chapter 5

5.1

Kα(ζ) generalised kernel function, (5.2)
dm(ζ) generalised measure, (5.3)
(F � G)(ζ, ξ) convolution with respect to dm, (5.4)
Rdress dressed resolvent kernel, (5.5)
fleft(ζ, ξ), fright(ζ, ξ) (5.6)
Gright(ζ, ξ) right auxiliary function,(5.8)
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δ+ζ q-difference operator, (5.12)

Gleft(ζ, ξ) left auxiliary function, (5.17)
ψ+(ζ, α) modified Cauchy kernel, (5.23)
dm0(ζ) generalised measure, (5.25)
(F ◦G)(ζ, ξ) convolution with respect to dm0, (5.26)
(F ∗G)(ζ, ξ) convolution ∗, (5.27)
Fleft, Fright (5.30)

5.2

ωrat(ζ, ξ|α) rational version of ω, (5.40)
Dζ q-Laplacian, (5.41)
(Af)(x1, · · · , xl) operator A on symmetric polynomials, (5.45)
(Df)(x1, · · · , xl) operator D on symmetric polynomials, (5.46)
(Bf)(x1, · · · , xl) operator B on symmetric polynomials, (5.47)
(Cf)(x1, · · · , xl) operator C on symmetric polynomials, (5.48)
T++ operator A on Young diagrams, (5.53)
T−− operator D on Young diagrams,(5.54)
T+− operator B on Young diagrams,(5.55)
T−+ operator C on Young diagrams,(5.56)

5.3

Ω annihilation operator Ω, (5.65),(5.66)
Bε(ζ) (5.67)
ω0(ζ2, ζ1), ω1(ζ2, ζ1) Taylor coefficients of ωrat as α(5.71)
Ω0, Ω1 annihilation operator Ω as α→ 0, (5.75),(5.76)
Q charge operator, (5.80)

X̃1(ζ1, ζ2), X̃0(ζ1, ζ2|α) gauge transformed X1(ζ1, ζ2), X0(ζ1, ζ2|α), (5.110)
Y ∨ vector corresponding to operator Y , (5.116)

Õ(J) A-basis of invariant operators, (5.121)
vk,J,m vector corresponding to a Bratteli diagram J , (5.122)
O(J) 3j-basis of invariant operators, (5.125)

5.4

ω(x) function ω in the XXX case, (5.137)

5.5

ϕ(ζ, ν) generating function for ω0, ω1 in XXZ case, (5.144)
Ja, Jbc structure constants of Sklyanin algebra, (5.148), (5.149)
K0, K2 Casimir elements of Sklyanin algebra, (5.153)
ϕ(μ, ν, τ ) generating function for ω1, ω2, ω3 in XYZ case, (5.169)
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Appendix

A.1

g genus of the hyper-elliptic curve,

A.2

κ rescaled twist, finite in the quasi-classical limit, (A.4)
Tcl(ζ,κ) quasi-classical limit of transfer matrix, (A.5)
� differential of the third kind with poles at 0,∞ (A.10)
dm±(z) quasi-classical measure, (A.14), (A.32)

A.3

S hyper-elliptic curve, (A.23)
ωi normalized differential of the first kind, (A.27)
ω(p1, p2) canonical differential of the second kind, (A.28)
ωq1,q2 normalized differential of the third kind, (A.29)

A.4

t(z) classical monodromy matrix, (A.33)
a(z), b(z), c(z), d(z) matrix elements of t(z), (A.33)
zj , wj separated variables, (A.36)
� variable conjugate to κ, (A.37)
S(k) symmetric power of S, (A.40)
A(p) Abel transformation, (A.42)
Θ Theta divisor, (A.45)

A.5

∇j flat connection, (A.58)
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[GKS] F. Göhmann, A. Klümper, and A. Seel. Integral representations for correlation func-
tions of the XXZ chain at finite temperature. J. Phys. A, 37 (2004), 7625–7656.

[Sl] N. Slavnov. Calculation of scalar products of wave functions and form-factors in the
framework of the algebraic Bethe ansatz. Theoret. and Math. Phys., 79 (1989), 502–
508.

[BLZ1] V. Bazhanov, S. Lukyanov, and A. Zamolodchikov. Integrable structure of conformal
field theory, quantum KdV theory and thermodynamic Bethe ansatz. Commun. Math.
Phys., 177 (1996), 381–398.

[BLZ2] V. Bazhanov, S. Lukyanov, and A. Zamolodchikov. Integrable structure of conformal

field theory II. Q-operator and DDV equation. Commun. Math. Phys., 190 (1997),
247–278.

[BLZ3] V. Bazhanov, S. Lukyanov, and A. Zamolodchikov. Integrable structure of conformal
field theory III. the Yang-Baxter relation. Commun. Math. Phys., 200 (1999), 297–
324.

[BJMST1] H. Boos, M. Jimbo, T. Miwa, F. Smirnov, and Y. Takeyama. Hidden Grassmann
structure in the XXZ model. Commun. Math. Phys., 272 (2007), 263–281.

[BJMST2] H. Boos, M. Jimbo, T. Miwa, F. Smirnov, and Y. Takeyama. Hidden Grassmann struc-
ture in the XXZ model II. Creation operators. Commun. Math. Phys., 286 (2009),
875–932.

[JMS1] M. Jimbo, T. Miwa, and F. Smirnov. Hidden Grassmann structure in the XXZ model
III: Introducing Matsubara direction. J. Phys. A, 42 (2009), 304018.

[BJMS] H. Boos, M. Jimbo, T. Miwa, and F. Smirnov. Hidden Grassmann structure in the
XXZ model IV: CFT limit. Commun. Math. Phys., 299 (2010), 825–866.

[JMS2] M. Jimbo, T. Miwa, and F. Smirnov. Hidden Grassmann structure in the XXZ model
V: sine-Gordon model. Lett. Math. Phys., 96 (2011), 325–365.

[T] M. Takahashi. Half-filled Hubbard model at low temperature. J. Phys. C, 10 (1977),
1289–1301.

[BK] H. Boos and V. Korepin. Quantum spin chains and Riemann zeta functions with odd
arguments. J. Phys. A, 34 (2001), 5311–5316.

[SST] J. Sato, M. Shiroishi, and M. Takahashi. Correlation functions of the spin-1/2 anti-
ferromagnetic Heisenberg chain: exact calculation via the generating function. Nucl.
Phys. B, 729 (2005), 441–466.

[Lk1] S. Lukyanov. Low energy effective hamiltonian for the XXZ spin chain. Nucl. Phys.
B, 522 (1998), 533–549.

[LT] S. Lukyanov and V. Terras. Long-distance asymptotics of spin-spin correlation func-
tions for the XXZ spin chain. Nucl. Phys. B, 654 (2003), 323–356.
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Abel transformation, 176
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Bethe equations, 20
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crossing symmetry relation, 11
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density matrix, 16
Destri-de Vega equation, 45
disordered phase, 2
divisor, 51
domain-wall partition function, 21
dressed resolvent, 111
dressed Russian doll, 73
Drinfeld generators, 25
dual reduced qKZ equation, 11

entanglement entropy, 16
evaluation homomorphism, 26

fusion procedure, 37

Hopf algebra, 22

inhomogeneous lattice, 9
invariant operators, 141
inverse problem, 118

Jacobi inversion formula, 177
Jacobi variety, 176

left (right) admissible operator, 41
left reduction, 52
length, 47

Matsubara direction, 1
Matsubara monodromy matrix, 4
Matsubara transfer matrix, 4

normalised holomorphic differential,
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normalised third kind differential,
173

ordered phase, 2

quantum space, 27
quantum Wronskian relation, 43
quasi-intertwiner, 50
quasi-local, 6

R-matrix, 8
reduced qKZ equation, 10
Riemann bilinear relations, 172
right reduction, 52
Russian doll construction, 72

Schur polynomial, 123
separation of variables, 174
six vertex model, 1

Sklyanin algebra, 157
Space direction, 1
spectral parameter, 8
spin, 3
spin 2 annihilation operator, 105
support, 47

TQ equation, 20

universal R-matrix, 23

Verma module, 24

weight, 3

Yang-Baxter equation, 8
Young diagram, 123

Zamolodchikov algebra, 101
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