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Preface

The use of random sampling in the field of discrete and computational geometry
started in the 1980s, motivated by the challenges in designing efficient algorithms
for geometric problems. While these earlier uses were tightly coupled with spe-
cific geometric scenarios, soon the key problems were formulated abstractly in the
framework of combinatorial and geometric set systems. We state one of the princi-
pal structures that will be studied in this framework. Let X be a set of n elements
and F a collection of subsets of X; the pair (X,F) forms a set system.

Epsilon-nets: Given a parameter ε ∈ (0, 1], a set N ⊆ X is an ε-net
of (X,F) if each S ∈ F of size at least ε |X| has non-empty intersection
with N .

The goal is to find ε-nets of small size; this of course depends on the structure and
complexity of (X,F). A classical geometric instance of this question—first studied
in 1987 and settled conclusively in 2017—is to determine, given any set P of n
points in R

d, the smallest N ⊆ P such that any half-space containing at least εn
points of P contains at least one point of N .

Selective aspects of ε-nets have been presented in earlier texts (Combinatorial Ge-
ometry, Pach and Agarwal, 1995; The Discrepancy Method, Chazelle, 2000; Lectures
on Discrete Geometry, Matoušek, 2004; Geometric Approximation Algorithms, Har-
Peled, 2011). However, the last ten years have seen significant progress with many
open problems in the area having been resolved during this time. These include
optimal lower bounds for ε-nets for most geometric set systems, the use of shallow-
cell complexity to unify proofs, simpler algorithms to construct ε-nets, and the use
of ε-approximations for construction of coresets via sensitivity analysis, to name a
few. This book presents a didactic account of these recent developments. We will
revisit classical results, but with new and more elegant proofs which unify earlier
work.

Chapter 1 introduces the two key technical ingredients that lie at the heart
of the analysis of random sampling methods in this book: the complexity
of certain combinatorial structures arising in geometric configurations and
the probability of a random variable deviating far from its expectation.
While historically these two have been considered separate statements with
entirely different proofs, we present a powerful probabilistic technique from
which both of these bounds can be deduced in a uniform way.

Chapters 2 and 3 initiate the study of ε-nets for some basic geometric set
systems in R

2, delineating the precise geometric properties that are relevant
to the construction of ε-nets; these are then combined with probabilistic
techniques to derive asymptotically optimal bounds on the size of ε-nets.

ix
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While these will be superseded later by more general and powerful com-
binatorial machinery, they are important in understanding the intuition,
ideas, and analysis at their most elementary level.

The move from geometric to combinatorial set systems requires formulat-
ing and proving analogs of geometric properties for combinatorial systems.
Chapters 4 and 5 are devoted to building this technical foundation. First,
the VC-dimension and the shallow-cell complexity of combinatorial set sys-
tems are introduced and studied as measures of complexity of a set system.
These are then used to construct combinatorial equivalents of geometric
properties relevant to ε-net constructions.

Chapters 6 to 8 present the current best bounds for ε-nets for combinatorial
set systems (X,F), where the bounds depend on the VC-dimension and the
shallow-cell complexity of F . Together these chapters contain the insight
that one can derive optimal bounds for geometric set systems from combi-
natorial bounds based on the shallow-cell complexity of the corresponding
set system. Chapter 9 studies a geometric case where small ε-nets do not
exist, set systems induced by convex sets in R

d, and where one has to turn
to the notion of a weak ε-net.

Chapters 10 and 11 are concerned with lower bounds on sizes of ε-nets,
based on the insight that a lower bound on the size of an ε-net for a given
set system (X,F) follows from a lower bound on the VC-dimension of a
related set system, the k-fold union of F . These lower bounds are then
used to show optimality of the ε-net bounds presented earlier.

Chapters 12 to 15 study another notion of samples, ε-approximations, for
both geometric and combinatorial set systems. It also includes an applica-
tion of ε-approximations for constructing small coresets for some geometric
optimization problems.

Chapter 16 concludes the book with a list of bounds on the VC-dimension
and shallow-cell complexity for most commonly studied geometric set sys-
tems, as well as on sizes of their ε-nets and ε-approximations. This will
serve as a reference for those looking for the state-of-the-art bounds on
these topics.

We now briefly list some topics which are not in this book: algorithms tailored to
construct ε-nets efficiently for specific geometric set systems, efficient deterministic
versions of the probabilistic algorithms, range searching and other classic algorith-
mic applications, bounds for combinatorial discrepancy of geometric set systems.
This choice was guided by two factors. First, the techniques involved in these are
rather different, often relying on detailed geometric data-structures; doing justice
to this essentially requires another book. Second, parts of it have been covered very
nicely in earlier texts (e.g., in The Discrepancy Method by Chazelle).

While our key objective is to give a clear account of the ideas (as much as is possible
by us), we also hope that reading this book is a pleasant experience (the wonderful
texts Combinatorial Geometry by Pach and Agarwal and Lectures in Discrete Ge-
ometry by Matoušek being exemplary in this regard). We have also taken care to
make the present text useful for teaching: all calculations are written in sufficient
detail; each section begins with an “overview of ideas” which gives intuition into
the proof; wherever possible we first present the simplest non-trivial instance of the
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idea before dealing with the more general case; each chapter can be read mostly
independently (though it might use earlier results); additional insights, ideas and
calculations that are not crucial to the main text are interspersed throughout in
small font size. Each section typically contains one or two results, and is carved up
into smaller themes that are delineated by the symbol .

The text should be suitable as a first introduction to sampling aspects for senior
undergraduate and graduate students in computer science, mathematics and sta-
tistics. While mathematical maturity will certainly help in appreciating the ideas
presented here, only a basic familiarity with discrete mathematics, probability and
combinatorics is required to understand the material. For background on these
topics, the following books are recommended:

H. Tijms. Understanding Probability: Chance Rules in Everyday Life.
Cambridge University Press, 2007.

J. Matoušek and J. Nešetřil. Invitation to Discrete Mathematics. Oxford
University Press, 2008.

M. Mitzenmacher and E. Upfal. Probability and Computing: Random-
ization and Probabilistic Techniques in Algorithms and Data Analysis.
Cambridge University Press, 2017.

For teaching a course on these topics, we recommend that around 2 hours of class
time be devoted to each chapter; this text is suitable for a 30 to 40 hour course on
the subject (there is considerable freedom in the choice of topics to cover). We also
hope that this book will be useful for researchers in the field as a reference text
for looking up specific bounds as well as learning quickly the ideas and techniques
behind specific results.

We would be grateful if any errors are reported to nabilhmustafa@gmail.com.

Acknowledgments. This text benefited greatly from feedback and discus-
sions with several mentors, colleagues and students. In particular, I am grateful
to the following people: Imre Bárány, Victor-Emmanuel Brunel, Jean Cardinal,
Timothy Chan, Bernard Chazelle, Mónika Csikós, Kunal Dutta, Fritz Eisenbrand,
David Eppstein, Jeff Erickson, Martina Gallato, Arijit Ghosh, Andrey Kupavskii,
Jesús De Loera, Frédéric Meunier, Wolfgang Mulzer, Márton Naszódi, János Pach,
Dömötör Pálvölgyi, Dominique Perrin, Jeff Phillips, Saurabh Ray, Güntor Rote,
Gabor Tardos, Csaba Tóth, Kasturi Varadarajan, and Emo Welzl.

I am also grateful to the Agence Nationale de la Recherche (ANR) for funding my
research for the past ten years, and to my colleagues at LIPN, Villetaneuse and
LIGM, Marne-la-Vallée.

It was a pleasure to work the people from the AMS Publishing. I would like to
especially thank Ina Mette for her great help and patience.

Nabil H. Mustafa
Nogent-sur-Marne, September 2021





Background

Basic notation. The cardinality of a finite set X is denoted by |X|. For a real
number a, �a� denotes the largest integer less than or equal to a; similarly �a�
denotes the smallest integer greater than or equal to a. We use the notation [n] for
the set {1, . . . , n}, where n is a positive integer. We will use the notation A = B±C,
where A, B ∈ R and C ∈ R

+, as a shorthand for A ∈ [B − C, B + C]. We will use
log n for logarithms with base 2, and lnn for logarithms with base e. The letters N,
R, Z are reserved for the set of all natural numbers, reals and integers, respectively.

Asymptotic notation. For two real valued functions f and g, we say that f =
O (g) if there exist large-enough constants n, C > 0 such that f (x) ≤ Cg (x) for
all x ≥ n. Here the values of n, C might depend on other quantities considered
as constants; we will explicitly point out such dependencies when they occur. The
notation f = Ω(g) is equivalent to g = O (f), f = Θ(g) if and only if f = O (g)

and f = Ω(g), and f = o (g) if limx→∞
f(x)
g(x) = 0.

Set systems. Given a finite set X, 2X will denote the collection of all subsets of
X. Similarly, for 0 ≤ k|X|,

(
X
k

)
will denote the collection of all subsets of X of size

k, and so
∣∣(X

k

)∣∣ = (|X|
k

)
. A set system is a pair (X,F), where X is a set and F is

a collection of subsets of X. When X is clear from the context, we will simply use
F to denote the set system.

Geometric notions. R
d will denote the d-dimensional Euclidean space. For a

measurable set X ⊆ R
d, vol (X) denotes the d-dimensional Lebesgue measure of X.

The symbol ∂X denotes the boundary of X ⊆ R
d, and int (X) the interior of X.

For p ∈ R
d and r > 0, Ball(p, r) denotes the closed ball of radius r centered at p. A

set X ⊂ R
d is convex if for every p, q ∈ X, the segment pq is contained in X. The

set conv (X) is defined to be the intersection of all convex sets in R
d containing X.

Alternatively, q ∈ conv (X) if and only if there exist points p1 ∈ X, . . . , pd+1 ∈ X
and nonnegative reals t1, . . . , td+1 such that

∑
i ti = 1 and q =

∑
i tipi. A finite

set X ⊂ R
d is said to be ‘in convex position’ if p /∈ conv (X \ {p}) for all p ∈ X.

Radon’s theorem states that given any set P of d + 2 points in R
d, there exists a

partition of P into two disjoint sets P1 and P2 such that conv (P1)∩ conv (P2) 
= ∅.

General position. Throughout the text we will often assume that a configuration
of geometric objects is ‘in general position’. That is, all properties and correspond-
ing results are invariant to an arbitrarily small perturbation of the configuration.
For example, for a set of n points in R

d in general position, we will assume that
no d + 1 points lie on a common hyperplane, no d + 2 on a common sphere and so
on. The specific properties assumed for a configuration in general position will be
explicitly stated where used.

xiii
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Point-hyperplane duality. The dual of a point p = (p1, . . . , pd) ∈ R
d is the

hyperplane p1x1 + p2x2 + · · ·+ pd−1xd−1 − xd = −pd. The dual of a ‘non-vertical’
hyperplane h : a1x1+ · · ·+ad−1xd−1+xd = b is the point (a1, . . . , ad−1, b). The key
property of duality, easy to verify using the above mappings, is that it preserves
incidences and sidedness. That is, for any point p ∈ R

d and any hyperplane h, p lies
above h (with respect to the xd-coordinate) if and only if the point corresponding
to the dual of h lies below hyperplane corresponding to the dual of p.

Graphs. An undirected graph is usually denoted by G = (V, E), where V is the

set of its vertices, and E ⊆
(
V
2

)
is the set of its edges. When the sets V and E are

not explicitly defined, they will be denoted by V (G) and E (G). If {u, v} ∈ E, we
say that u and v are adjacent in G, and that v is a neighbor of u (and vice versa).
For any v ∈ V , NG(v) ⊆ V will be the set of vertices of V which are adjacent to v.

The complete graph, where E =
(
V
2

)
, on t vertices will be denoted by Kt, and the

complete bipartite graph with t1, t2 vertices in the two partite sets will be denoted
by Kt1,t2 . A subset V ′ ⊆ V such that there are no edges between any two vertices
of V ′ in G is called an independent set. Any V ′ ⊆ V such that there is an edge in
G between every two vertices of V ′ is called a clique.

A drawing of an undirected graph G = (V, E) in the plane consists of two functions
that map V and E to subsets of the plane. The function φV : V → R

2 maps each
vertex v ∈ V to a point φV (v) ∈ R

2. Then for each edge e = {u, v} ∈ E, the
continuous function φe : [0, 1] → R

2 maps e to a continuous arc in R
2 connecting

the images of u and v, i.e., connecting φe (0) = φV (u) to φe (1) = φV (v). We will
assume that φV is injective (φV (x) = φV (y) if and only if x = y) and that no arc
φe [0, 1] passes through the image of any vertex apart from the endpoints of e. A
drawing of G = (V, E) is called an embedding or a plane graph if (the images of)
no two edges share an interior point (of course, they may share an endpoint). G
is called planar if it has an embedding in R

2. A planar graph on n vertices has at
most 3n − 6 edges and at most 2n − 4 faces in any embedding.

Given a set P of n points in the plane, the Delaunay graph of P has an edge between
two points p, q ∈ P if and only if there is a closed disk containing p and q and no
other point of P . The Delaunay graph is planar, and so has at most 3n − 6 edges.

Probability. Pr [A] denotes the probability of an event A. The expectation of a
random variable X is denoted by E [X]. An indicator random variable is a random
variable which can have a value of 0 or 1. For an indicator random variable X,
we have E [X] = Pr [X = 1]. Linearity of expectation states that for two random
variables X and Y , we have E [X + Y ] = E [X] + E [Y ]; the usefulness of this
statement comes from the fact that it holds regardless of any dependency between
X and Y .
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Equations and inequalities. Here are some inequalities that will be useful.

Pascal’s rule:

(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
, n, k ∈ Z

+.

Geometric-arithmetic
mean inequality:

n∏
i=1

ai ≤
(∑n

i=1 ai

n

)n

, a1, . . . , an ∈ R
+.

Exponential: 1 + x ≤ ex, for x ∈ R.

1− x ≥ e−2x, for x ∈ [0, 0.79] .

Binomial theorem: (x + y)n =
n∑

i=0

(
n

i

)
xi yn−i, n ∈ Z

+, x, y ∈ R.
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[Mat95b] J. Matoušek, Approximations and optimal geometric divide-and-conquer, J. Comput.

System Sci. 50 (1995), no. 2, 203–208, DOI 10.1006/jcss.1995.1018. 23rd Symposium
on the Theory of Computing (New Orleans, LA, 1991). MR1330253

[Mat99] J. Matoušek. Geometric Discrepancy: An Illustrated Guide. Springer, 1999.
[McM70] P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika 17

(1970), 179–184, DOI 10.1112/S0025579300002850. MR283691
[Mul18] W. Mulzer, Five proofs of Chernoff’s bound with applications, Bull. Eur. Assoc. Theor.

Comput. Sci. EATCS 124 (2018), 59–76. MR3793013
[Mus16] N. H. Mustafa, A simple proof of the shallow packing lemma, Discrete Comput. Geom.

55 (2016), no. 3, 739–743, DOI 10.1007/s00454-016-9767-5. MR3473678
[Mus19] N. H. Mustafa, Computing optimal epsilon-nets is as easy as finding an unhit set,

46th International Colloquium on Automata, Languages, and Programming, LIPIcs.
Leibniz Int. Proc. Inform., vol. 132, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2019, pp. Art. No. 87, 12. MR3984904
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k-Delaunay graphs, 1

anchored rectangles, 72

epsilon-nets for VC systems, 91

level sets for disks (dual), 7

level sets for disks (primal), 5

level sets for half-spaces, 9

Markov’s inequality, 15

packing theorem, 80

tail bounds, 16

union complexity, 68

balls in R
d, 213

binomial theorem, 17

approximations, 19

boxes

k-fold union, 158

dual set system, 159

canonical objects, 35, 96

disks, 4, 34, 39, 47

halfplanes, 34, 39

rectangles, 31

trapezoids, 46

centerpoints, 133

centerpolytope, 133

for all subsets, 134

use for weak epsilon-nets, 134

centroids, 140

chaining, 199

intuition, 185

charging scheme, 116

with permutations, 120

Chernoff’s bound, 13, 92

asymmetry, 19

proof, 16

clustering, 215

combinatorial approximation of points, 213

convex-hull, 135

convexity

center polytope, 133

points in convex position, 137

polytopes, 131

shrinking, 138

volume, 139

coresets, 220

definition, 220

literature, 225

sensitivity, 223

247
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cuttings
inside a simplex, 50
optimality, 44
segments, 44, 47, 54
shallow cuttings, 51, 78
simplices, 50
uses for divide-and-conquer, 55

decomposition
trapezoidal, 46
triangles, 45

discrepancy
balls (dual), 238
balls (primal), 238
books, 183
bound for VC systems, 179
boxes, 238
chaining, 192
combinatorial, definition, 178, 236
combinatorial, for half-spaces, 182
connection to lower bounds for

approximations, 239
dual set systems, 237
geometric, 155, 237
half-spaces, 238

Lebesgue, 237
optimal bounds, 236

discretization, 94
distance decomposition, 214
distributions

negatively associated, 12
duality, 77

epsilon-approximation
a first calculation, 172
algorithm for general case, 173
definition, 172, 185
for general functions, 216
functional, 216
general case, 172
half-spaces, 193
intuition, 171
VC-dimension, 186
weighted, 221

epsilon-approximations
additivity lemma, 174, 186
chaining for VC set systems, 186
composition properties, 189
discrepancy proof for VC bound, 180
experimental evaluation, 198
inductive proof, 174
lower bounds, 237
optimal bound for half-spaces, 182
relation to discrepancy, 178, 236
using jittered sampling, 193
VC bound via discrepancy, 178
VC original theorem, 174

epsilon-net
anchored rectangles, 24

bounded degree, 38

boxes in R
d, 26, 29

disks, 31, 37, 39, 57, 58

general set system, 26, 38

general set systems, 38

half-spaces, 139

halfplanes, 24

history, 89

intervals, 23

linear shallow-cell complexity, 115

lower bound abstract case, 167

lower bound dual boxes, 168

lower bound half-spaces, 168

optimality of VC-dimension bound, 89

rectangles in R
2, 31

shallow-cell complexity, 96

shallow-cell complexity theorem, 90, 96,
233

triangles, 46

VC-dimension, 91

weak convex, 131

weak convex in R
2, 132

weak convex theorem, 132

weighted, 22, 113, 115

weighted disks (primal), 115

epsilon-nets

balls, 234

bottomless rectangles (primal), 234

convex sets, 234

disks (primal), 234

fat triangles (primal), 234

half-spaces, 234

homothets, 234

inductive proof for VC-dimension, 176

intervals, 234

iterative constructions, 94

lines, 234

pseudo-disks (primal), 234

rectangles (dual), 234

rectangles (primal), 234

triangles (primal), 234

union complexity (dual), 234

fat triangles, 228

finite differencing, 218

forbidden induced subgraph problem, 52

ghost sampling, 94

graphs

k-Delaunay, 1

boundary of union of disks, 7

Delaunay, 4, 5

planar, 1, 7, 46

unit distance, 61, 82

grid

non-uniform, 29

uniform, 238

Grünbaum’s inequality, 140
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half-space depth, 139

half-spaces
arrangement, 9

Haussler’s packing theorem, 75, 80
Helly’s theorem

convex sets, 133

rectangles, 152
homothets, 228

jittered sampling, 193

Kövári-Sós-Turán theorem, 52

level of points

half-spaces, 9
level sets, 4

disks (dual), 7
disks (primal), 4, 40
functions, 216

half-spaces (dual), 9, 50
half-spaces (primal), 9

rectangles (primal), 70
trapezoids, 47, 49

linear programming, 21, 35
books, 129

rounding, 128
weighted hitting set, 128

list

epsilon-approximations, 236
epsilon-nets, 233

properties of geometric set systems, 228
lower bounds

k-fold union, intersection for general
systems, 145

abstract epsilon-nets, 167
basic idea for epsilon-nets, 143, 167

direct probabilistic construction, 168
dual boxes epsilon-nets, 168

half-spaces epsilon-nets, 168
weak epsilon-nets, 137

Markov’s inequality, 15, 33, 35
proof, 15

minimum hitting set problem
definition, 21

NP-hard, 21
weighted, 128

nearest-neighbor queries, 89
non-uniform sampling, 114

oracles, 107, 108
orthogonal functions, 155

packing statements
geometric set systems, 207

half-spaces in R
d, 77

Haussler’s packing theorem, 80

maximal, 98
maximal packings, 103

shallow-cell complexity, 85
use for chaining epsilon-approximations,

188
use for epsilon-nets, 96
use for relative epsilon-approximations,

210
VC-dimension, 85, 188

Pascal’s identity, 53
polytope approximation, 138

history, 140
proof, 138

prefix, 151
probability distribution

Bernoulli, 106
binomial, 11
negative binomial, 106
without replacement, 12

pseudo-dimension of functions, 219
pseudo-disks, 228
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rectangles

k-fold union (dual), 150
binary representation, 151
lifting, 160
lower bound for epsilon-nets, 150
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orthogonal system, 152

parity argument, 153

relative epsilon-approximation

chaining for VC set systems, 208

composition properties, 202, 209

definition, 200, 202, 208

first bound, 203

relation to (ν, α)-samples, 207

relation to epsilon-approximations, 201

relation to epsilon-nets, 200

sensitive epsilon-approximation

bound for VC set systems, 205

definition, 205

intuition, 204

lower bound, 205

separators, 55

sequence, 91

set system

anchored rectangles in R
2 (primal), 24

disks (primal), 31, 90

disks in R
2 (primal), 21, 23

downward-facing half-spaces, 9

half-spaces in R
2 (primal), 24

half-spaces in R
d (dual), 9

half-spaces in R
d (primal), 8

induced by simplices, 163

intervals (primal), 24

products, 159

rectangles in R
2 (dual), 150

rectangles in R
2 (primal), 31

rectangles in R
d (primal), 26, 29

sine curves (primal), 143

triangles, 44

set systems

dual, 8, 228

primal, 8, 228

projection, 57

shallow-cell complexity, 58, 67, 85, 89, 96,
115, 228

k-fold union of intervals, 230

anchored rectangles, 70, 72

balls, 230

bottomless rectangles, 230

convex sets, 230

disks (dual), 67

disks (primal), 67, 230

half-spaces k-fold intersection, 230

halfplanes, 230

halfspaces k-fold union, 230

homothets of a convex body, 230

intervals, 230

lines, 230

pseudo-disks, 228

pseudo-disks (primal), 230

rectangles, 70, 230

set systems (dual), 67

triangles, 230

well-behaved, 59

shifting, 61, 63

simplicial partition theorem, 134, 194

construction algorithms, 198

history, 137

use for epsilon-approximations, 194

spatial partitioning, 89

symmetric difference, 61, 75

tail bounds, 11, 199

threshold structures, 171

transformations

dualizing points, 163

lifting boxes, 162

paraboloid lift of points, 9

rectangle products, 160

stretching points, 162

union

balls, 215

union complexity, 68

disks, 7, 69

dual set systems, 68

epsilon-nets, 103

rectangles, 69

upper bound theorem

convex polytopes, 9

VC-dimension, 58, 63, 157, 228

k-fold union of intervals, 230

abstract k-fold union, 145

balls, 65, 230

bottomless rectangles (primal), 230

convex sets, 131, 230

disks, 230

dual, 229

dual boxes k-fold union, 158

dual rectangles k-fold union, 150

half-spaces, 65

half-spaces k-fold intersection, 230

half-spaces k-fold union, 162, 230

halfplanes, 230

history, 66

homothets of a convex body, 230

hyperplanes, 64

induced by simplices, 163

intervals, 230

lines, 230

orthants k-fold union, 162

polynomials, 65

pseudo-disks, 230

rectangles (primal), 230

triangles, 230

Venn diagram, 229

weighted

epsilon-approximations, 221

epsilon-nets, 113, 115
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Zarankiewicz problem, 52
K2,2 proof, 53
inductive proof, 53
segments in R

2, 52
simplices in Rd, 54
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Understanding the behavior of basic sampling techniques and 

intrinsic geometric attributes of data is an invaluable skill that 

is in high demand for both graduate students and researchers 

in mathematics, machine learning, and theoretical computer 

science. The last ten years have seen signifi cant progress 

in this area, with many open problems having been resolved 

during this time. These include optimal lower bounds for 

epsilon-nets for many geometric set systems, the use of 

shallow-cell complexity to unify proofs, simpler and more 

effi cient algorithms, and the use of epsilon-approximations for construction of 

coresets, to name a few. 

This book presents a thorough treatment of these probabilistic, combinatorial, and 

geometric methods, as well as their combinatorial and algorithmic applications. It 

also revisits classical results, but with new and more elegant proofs.

While mathematical maturity will certainly help in appreciating the ideas presented 

here, only a basic familiarity with discrete mathematics, probability, and combina-

torics is required to understand the material.
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