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A P P E N D I X A
Mathematical Writing [by Neal Carothers]

Mathematics is suffering from a bad public image. This is actually a
recent phenomenon: Fifty years ago mathematics had no public image
at all, let alone a poor one. But a lot has changed in those fifty years.
Calculus, for example, was at one time taught only to highly specialized
scientists and engineers—now it’s taught in most high schools. Mathe-
matics effects a larger portion of our society than ever before and yet,
somehow, elicits more disdain than excitement. Our society is becom-
ing more mathematically literate, but evidently no more sympathetic to
mathematics. Why?

Critics point to a growing inability (or unwillingness) of mathematics
teachers to communicate. Those most able to express their interest in
mathematics are apparently failing to do so. And if one generation of
teachers does a poor job in communicating mathematical ideas, the next
generation of teachers suffers. In other words, love and enthusiasm for
mathematics is contracted from our teachers, much like a virus. Only
those infected can pass it on.

At the heart of society’s misconceptions about mathematics is the
failure to recognize mathematics as a human endeavor. Human beings
study mathematics because it pleases them to do so. Not because it builds
better mouse traps. We study mathematics for the same reasons that we
study art, or music, or literature. That mathematics is frequently useful
to engineers and businessmen is typically of more interest to engineers
and businessmen than mathematicians.

Our challenge as mathematicians is to communicate the elegance and
beauty of mathematics to the unenlightened without relying on its utility
as a crutch. Your goal as a student of mathematics is to learn its language
and its culture well enough to meet this challenge. The alternative is an
unfulfilled life in which your work is misunderstood and unappreciated.
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132 A. Mathematical writing

The following suggestions may prove useful in improving your com-
munication skills.

1. Mathematics is written in complete sentences. Any mathematically
literate reader with the ability to translate the symbols should be
able to understand each statement. A student taking the same course
as you are, but in a different state, should be able to read and under-
stand your writing. You are not writing simply for the benefit of the
instructor! It might help if you imagined that you were writing for
the benefit of some mythical person (who may not have access to a
particular reference or textbook).

2. It’s polite, both to your instructor and to your mythical friend, to
include the statement of the problem (or the theorem you’re about
to prove) along with your solution (or proof). This not only makes
the solution self-contained, and so easier to read, it also acts as a
reminder of just what it is that you need to do.

3. Proofread, edit, rewrite, proofread, edit, rewrite, . . . . Try reading
your solution aloud. Does it make sense? Is it clumsy or confusing?
If not, then delete a few offensive lines, or add a few extra lines
of clarification. A proof is judged first and foremost by its clarity.
Elegance and simplicity are icing on the cake; they can only be
introduced after a proof is “fully baked.”

4. Be direct. Although proofs by contradiction are often short and
“slick,” you should avoid them, when possible, in favor of direct,
more easily understood proofs. When contradiction seems the only
logical course of action, then say so: A proof by contradiction
should begin by announcing itself to the reader.

5. Write. You will notice that most “professional” proofs are abso-
lutely thick with prose. Very few intelligible proofs are written us-
ing only mathematical symbols.1

Biographical note: Neal Carothers is Professor Emeritus of mathemat-
ics at Bowling Green State University. This appendix being used with
his permission and has been adapted from handouts given to students in
his courses at BGSU. Professor Carothers is the author of Real Analysis
published by Cambridge University Press and A Short Course on Banach
Space Theory published by the London Mathematical Society.

1For more on this see Appendix B Comments on Style.



A P P E N D I X B
Comments on Style [by James R. Munkres]

The proofs are to be written out carefully and correctly, in good mathe-
matical style. This means:1

1. Write in complete sentences.

2. Punctuate! (Correctly, if possible.2)

3. Avoid such abbreviations as ∃, ∀, ∧, ∨, s.t., 3, w.r.t and similar
vulgarisms.3 All are acceptable in informal mathematical conver-
sations, or in a research paper in Logic. In mathematics research
journals or texts they are not allowed by editors. There are a few
horrendous exceptions. Here is an example, quoted from a textbook
on topology:

“Let f : [0,Ω) → [0,Ω) be s.t. f(α) < α for all α ≥ some α0.
Then ∃β0∀β∃α ≥ β : f(α) ≤ β0.”

Most mathematicians find this sentence unreadable “as is”; mentally
they translate it into the English language. It is an example of bad
mathematical style.

4. About the symbols⇒ (implies) and⇐ (is implied by), there is some
disagreement among mathematics editors as to their acceptability.
They are coming into more widespread use, in any case. In this
course, they will be acceptable.4

1The footnotes are the authors’, not Munkres’.
2Mathematicians don’t like to be picky about this, we’re not the grammar police. How-

ever, the quality of your writing does reflect on you and as such you should try to adhere to
the established rules you learned in your writing classes.

3These abbreviations will likely be acceptable if you are doing presentations at the
board. However, in your written solutions you should generally avoid them.

4Moreover, if you are doing an if and only if proof, you should use these markers to
indicate to the reader which direction of the proof you are about to do.
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134 B. Comments on Style

5. Try to steer a middle course between too much detail and not enough.
Give reasons for your answers sufficient to convince the reader that
your argument is correct and that you understand why it is correct.
But don’t bore the reader (and get writer’s cramp5) by checking each
tiny detail laboriously in writing. At one extreme of style (bad) are
those texts written so concisely that the reader must fill in most of
the details himself. At the other extreme (also bad) are the prob-
lem set solutions written by your most conscientious fellow student,
from which it is almost impossible to extract the basic idea because
of the wealth of detail included! Try to hit somewhere in the middle.

6. Incidentally, an illegible proof is incorrect by definition! 6

7. A common error is to write in what I call “stream of consciousness”
style, à la William Faulkner. When you finish a thought, stop, put
down a period, and take a good breath before you begin the next
sentence (with a capital letter, please).7

Biographical note: James Munkres is Professor Emeritus of mathemat-
ics at MIT. This appendix has been adapted from handouts given to stu-
dents in his courses at MIT. Professor Munkres is the author of Topology:
A first course published by Pearson and Analysis on Manifolds published
by Westview Press.

5or carpal tunnel syndrome
6This one won’t come up very often, if your homework is done in LATEX.
7It may be a good idea to really embrace the spirit of this if you are doing presentations

at the board. As you are writing down your proof, you should explain it line by line as you
are transcribing it on the board. If you write it all down in advance and then explain it, your
classmates may not be able to keep up with what you are doing if they are trying to follow
a lengthy explanation with no pauses while they listen to your explanation.



A P P E N D I X C
The Structure of a LATEX Document

This appendix is a short guide to writing documents in LATEX. It sup-
plements the material in Chapter 0, which was essentially an overview.
While it should suffice for this course, we will not discuss things like in-
cluding graphics. If you intend to use mathematics in your future career,
then an understanding of LATEX will be helpful as you embark on your
chosen path. If you are planning on being a teacher, then you can use
LATEX to write exams so that the mathematics is correctly presented. If
you are bound for graduate school, then you will use LATEX to write re-
search papers. If you are planning to work in industry, then you can use it
to write professional looking reports for your employer. Eventually it is
likely that you will find the need to create lists or graphs or use graphics
in your documents. At this point, you would need a more comprehensive
resource like [15], [8] or [19]. The page at [23] is a nice list of hints that
is organized by topic.

In general, a LATEX input file will look something like:
\documentclass[options]{classname}

...
\begin{document}

...
\end{document}

The first set of vertical dots is a placeholder for the rest of the pream-
ble and the second set of vertical dots is a placeholder for the body of
your file. The options box is where you would specify the font size
and any deviation from printing on letter sized paper, such as the Eu-
ropean A4 size or legal-size paper. There are several built-in choices for
classname, as well as many custom classes provided by journals. The

135



136 C. The Structure of a LATEX Document

\begin{document} and \end{document} commands tell TEX
where the content of your document begins and ends. (Coincidence?
We think not.) Anything in your file after \end{document} will be
ignored by LATEX. Section C.2 contains more detailed information about
how to write the preamble along with a sample that will suffice for your
homework solutions, but first let’s write a complete, albeit short, LATEX
document.

C.1 A sample LATEX document
Before we get to the inner workings of writing a full fledged LATEX doc-
ument we will start with a simple example. The following program will
output some text and some mathematics, both inline and displayed.

\documentclass[12pt]{article}
\begin{document}
The distance between points $(a,b)$
and $(x,y)$ in the plane is:
\[
d=\sqrt{(a-x)ˆ2+(b-y)ˆ2}.
\]
\end{document}

Type this and save it as sample.tex. After running it through your
compiler you should get:

The distance between points (a, b) and (x, y) in the plane is:

d =
√

(a− x)2 + (b− y)2.

although your margins will look a bit different. Can you figure out what
the commands mean? What are the dollar signs ($) for? Let’s move on
and examine the structure of a LATEX document piece by piece.

C.2 The Preamble
As you saw in Section 0.4, LATEX needs to know in advance what kind
of document you want to produce, as well as information about margins
and other global properties of the document. The preamble is the part
of the document where this information resides. In the previous section,
the preamble contained only the line containing the \documentclass
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command. This provided TEX with the information that you wanted to
typeset an article in a 12 point font. In general, however, the preamble
for your homework assignments needs to contain a bit more information.
The following preamble should suffice for the documents you will write
for this course. It will be the default preamble for the remainder of this
Appendix.

\documentclass[12pt]{article}
\usepackage{amssymb, amsthm, amsmath, fullpage}
\renewcommand{\baselinestretch}{1.25}
\newtheorem*{st}{Statement}
\newtheorem*{ex}{Exercise}

There are three choices for the font size, 10pt, 11pt and 12pt. It is pos-
sible to alter the size of the font as you go along, but these are the three
basic choices. We will see more about changing the font later on. The
five built-in choices for class are: article, book, letter, report
and slides. For now the article class lends itself well to being used
for homework. The three packages amssymb, amsthm and amsmath
provide TEX with a larger set of math symbols and a general theorem–
proof setup. The fullpage package defines the page so that the print
will be bordered by one-inch margins, rather than the larger margins that
are the LATEX default. There are many, many more packages that can be
used with LATEX to control how your fonts look and to place pictures
in your documents, but we will stick with these three for now. The
\baselinestretch line is for changing the spacing of your docu-
ment and the 1.25 option at the end of the line indicates to TEX that you
want one and a quarter spacing. To get double spacing, for example, you
would change the 1.25 to 2. (Note that this line is not strictly required,
but this choice along with the 12 point font makes the output a bit easier
for the reader to read.) The other two lines define macros to let TEX know
that you want to write the proof of a Statement or an explanation for an
Exercise. The * after \newtheorem tells TEX that you do not want it
to number things automatically. The word in the first set of curly braces
is the keyword that TEX will use to reference the amsthm package and
the word in the second set of curly braces is the text that will be printed
when TEX creates your output. For example, if you wanted to write up a
recipe you might include the line

\newtheorem*{recipe}{Recipe}
in your preamble.1

1Why you would want to include a recipe in your homework is anybody’s guess, but
isn’t it nice to know that you can do it?



138 C. The Structure of a LATEX Document

In order to streamline this process, it is a good idea to create a tem-
plate document and open it each time you need to TEX something. Then
you can save your document each time with a meaningful name like
homework1.tex or statement4_34.tex.

C.3 The Text
Now that you have the formatting part of your document set up you’re
ready to begin creating some text. We’ll start with the input to include
your name and the date. After the \begin{document} command you
would type:

\begin{flushright}
\textbf{your name}\\
MAT ??? HW \# ?\\
\today
\end{flushright}

The \begin{flushright}...\end{flushright} pair
causes all of the intermediate text to be right justified. The middle three
lines output your name, class and homework number and the date re-
spectively, where the question marks are placeholders for the class num-
ber and homework number. The \today command will find the current
date from your computer and put it in your document. (That was proba-
bly pretty obvious, right? But didn’t we say that TEX was intuitive?) The
double backslashes \\ at the end of each line indicate to TEX that you
want a new line. More about this later.

Now you’re ready to add some content to the body of your docu-
ment. For your homework, you will usually be turning in a proof of a
Statement. In Section C.2 we created a macro for each of these types
of assignments. (In case you are also turning in Exercises or Questions,2

you can create the corresponding macros in the preamble and modify the
following to fit.) For each proof in your homework, the source code will
look like:
\begin{assignment type}[number]{statement to prove}
\begin{proof}
Your proof goes here.
\end{proof}
\end{assignment type}
\vspace{1in}

In place of assignment type, you would type the keyword for
your amsthm proof environment macro. (Most likely st from Section

2or recipes
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C.2.) The number placeholder is, of course, where you would put the
number of the assignment. Then you would write the statement being
resolved in the space after the assignment number, so that your proof
is self-contained. (For more about this, see Appendix A.) Then you
would type your proof in the obvious place. The \vspace{1in} com-
mand creates an inch of blank space between successive assignments.
This leaves room for the reader to provide helpful comments about your
proofs.3

C.4 Formatting text
Since LATEX has a preconceived notion of what your document will look
like, it doesn’t care how many spaces you put between words. That is,
a single space or a number of spaces or even one line return will be
interpreted by TEX as a single space. Hence the following two inputs

The quick brown fox jumped over the lazy dog.

The quick brown
fox jumped over the lazy dog.

both generate the same output:

The quick brown fox jumped over the lazy dog.

Notice that this means that a single newline is not enough to create a new
paragraph. Paragraph breaks are accomplished by leaving a blank line in
the input file or by typing \par. As in the case of TEX interpreting many
spaces as a single space, TEX will also interpret many blank lines as a
single blank line. A line break can be forced by typing \\ or \newline.

In Section 0.4 there was a reference to marking text. This is how
WYSIWYG word processors work, but, for the most part, the process
is transparent. For example, to get MS Word to italicize a word you
could highlight the word and click the italics button, or you could turn on
italics with a set of keystrokes and then turn it off after you have finished
typing what needs to be italicized. With LATEX there are codes for italics,
boldface and other typefaces. The input for the previous sentence looks
like:

With \LaTeX\ there are codes for \textit{italics},
\textbf{boldface} and \textsl{other typefaces}.

3Of course, you can omit this command after the last proof in your homework set.



140 C. The Structure of a LATEX Document

Here is a short table of some of the different typefaces that are available
in LATEX for plain text.

Command Typeface Example

\textbf Boldface Example
\textit Italics Example
\textsc Small Caps EXAMPLE

\textsf Sans Serif text Example
\textsl Slanted text Example
\texttt Typewriter Example

To use these text markings, just enclose the text you want marked in a
set of curly braces {. . .} and put the appropriate formatting command in
front, as above. This is an example of where the TEX command is at least
sort of intuitive. The \text part of the command tells TEX that you
want to do something to some text and the last two letters correspond
nicely to the way you want the text formatted. We will see more of this
intuitiveness when we discuss writing mathematics.

While LATEX will typeset pages to look like they would in a textbook,
sometimes you want to alter the format a little bit. In addition to the
\baselinestretch option that allows you to change the interline
spacing, you can also add extra space between lines and even a little
space between words on the same line. Here is an extremely short list of
formatting codes:

Command Used for

\vspace{length} a space of the given length between lines of
text

\ a space between words or characters
\, a thin space between words or characters
\quad a space the width of a capital M between

characters
\qquad a space the width of MM between characters

C.5 Typesetting mathematics
Some of this may seem like using a sledgehammer to open a walnut, and
perhaps it is to a degree, but now we’re ready jump into the beauty of TEX
and witness its power. This power is the ability to typeset mathematics
in a professional looking way. To invoke this power, you need to tell
TEX when you want it to create mathematics. This is accomplished by
enclosing the TEX commands for mathematics in dollar signs ($). Recall
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the sample program from Section C.1. (Did you guess that the dollar
signs had something to do with math?) Notice that the inline math (x, y)

corresponded to $(x,y)$ and the displayed math corresponded to the
input \[d=\sqrt{(a-x)ˆ2+(b-y)ˆ2}\]. Thus, to cause TEX to
create inline math you need to enclose all of the math content in dollar
signs. You don’t need a pair of them for each mathematical symbol.
However, you do want to make sure that everything that is supposed to
be mathematics is enclosed in dollar signs. Note the difference between
a regular text x and an x in TEX’s math font.

Command Used for

$...$ Inline mathematics
\[...\] Displayed mathematics

Sometimes the mathematical part of your writing may be too large
to fit nicely on the same baseline as the surrounding text. For example,
recall the usual definition of the derivative given by f ′(x) =

limh→0
f(x+h)−f(x)

h . This looks cramped as inline math, so it would be
a good place to appeal to TEX’s displayed math option. Then we would
get the nicer looking output:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

from an input of \[f’(x)=\lim_{h\to 0}\frac{f(x+h)-
f(x)}{h}\]. (Can you figure out what the commands mean?) In the
next section we provide a short list of commands for typesetting math-
ematics. Keep in mind that as you get more practice, the process of
writing in LATEX will become easier. Don’t be anxious about all of the
commands, it’s really not hard to get the hang of.

C.6 LATEX codes for common mathematical
symbols

As you are writing your proofs you will need to include some math sym-
bols. (This is a math class, right?) The following table contains a non-
comprehensive list of codes that will come in handy when you are writing
proofs for this class. The complete list of TEX codes is quite long. Check
out [22] for over 300 pages of more than 14,000 TEX codes that can be

used for everything from math (
∮

Γ

f(z) dz) to astronomy ( ) to music

( ) to laundry ( ) and even the code for this man’s face: . The
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following tables contain some common mathematical symbols that you
may find useful as you are preparing your homework.

Math accents

â \hat{a} ã \tilde{a}
ā \bar{a} ~a \vec{a}

Lowercase Greek letters

α \alpha η \eta
β \beta θ \theta
γ \gamma ι \iota
δ \delta κ \kappa
ε \epsilon λ \lambda
ε \varepsilon µ \mu
ζ \zeta ν \nu
ξ \xi υ \upsilon
o o φ \phi
π \pi ϕ \varphi
ρ \rho χ \chi
σ \sigma ψ \psi
τ \tau ω \omega

Upper case Greek letters

Γ \Gamma Λ \Lambda
∆ \Delta Ξ \Xi
Θ \Theta Π \Pi
Σ \Sigma Ψ \Psi
Υ \Upsilon Ω \Omega
Φ \Phi

Binary relations

6= \ne ≈ \approx

≡ \equiv � \preceq
< < ≤ \le
> > ≥ \ge
∈ \in /∈ \notin
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Binary relations (cont.)

⊂ \subset ⊆ \subseteq
⊃ \supset ⊇ \supseteq
| \mid ∼ \sim
' \simeq ∼= \cong
‖ \parallel ⊥ \perp

Binary operators

+ + − -
± \pm ∓ \mp
× \times · \cdot
∪ \cup ∩ \cap⋃

\bigcup
⋂

\bigcap∑
\sum

∫
\int

∨ \vee ∧ \wedge
◦ \circ \ \setminus

Arrows

← \leftarrow
→ \rightarrow or \to
⇐ \Leftarrow
⇒ \Rightarrow
↔ \leftrightarrow
⇔ \Leftrightarrow
←− \longleftarrow
−→ \longrightarrow
⇐= \Longleftarrow
=⇒ \Longrightarrow
←→ \longleftrightarrow
⇐⇒ \Longleftrightarrow

Delimiters
( ( ) ) [ [ ] ]
{ \{ } \} 〈 \langle 〉 \rangle
/ / \ \backslash | | ‖ \|
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Miscellaneous symbols

♦ \diamondsuit ♥ \heartsuit
♣ \clubsuit ♠ \spadesuit
∀ \forall ∞ \infty
∃ \exists @ \nexists
∅ \varnothing ` \ell
ℵ \aleph { \complement
� \square © \bigcirc
♦ \lozenge 4 \triangle
. \triangleright / \triangleleft
O \triangledown ∠ \angle
∗ \ast • \bullet
. . . \dots · · · \cdots

... \vdots
. . . \ddots

F \bigstar

To create the blackboard bold font for the number systems you use
the code \mathbb along with the letter of the corresponding set of num-
bers. For example, to indicate that n is a natural number you would write
n\in\mathbb{N} to get n ∈ N. Whereas a table in section C.4 listed
typefaces for plain text, the following lists the typefaces available for
mathematical text.

Command Typeface Example

\mathbb Blackboard bold N
\mathbf Math boldface x + 2

Notice that all of the symbols listed above are just one character.
However, in mathematics we don’t often use just one character to get
our point across. Thus, we conclude this section with a few examples of
mathematics with more than one character. The following table shows
the LATEX codes for the output, but not the delimiters for inline or dis-
played math.

LATEX code Output

\frac{a}{b} a
b

p_{n} pn
xˆ{n} xn

\sum_{i=1}ˆ{5}
∑5
i=1

\int_{a}ˆ{b}f(x)\, dx
∫ b
a
f(x) dx
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Keep in mind that all of the preceding symbols are math symbols and
as such need to be enclosed between dollar signs or a \[ . . .\] pair. As
a reminder, the code for symbols found in definitions is included at the
end of the corresponding definition as follows: [symbol↔ code].

C.7 Tables
Since the text starts with truth tables, it will be useful to know how to
typeset a table in LATEX. Again, the syntax is fairly obvious and so it is
not too hard to understand the tabular environment. For example, to
typeset the table

Currency Exchange rate to US dollars

Yen (U) 1 Yen = 0.00916151 USD

Euro (e) 1 Euro = 1.22938 USD

you would type the following TEX code.
\begin{center}
\begin{tabular}{|c|p{2.5in}|}
\hline
\textbf{Currency} & \textbf{Exchange

rate to US dollars}\\
\hline
Yen (\yen)&1 Yen = 0.00916151 USD\\
\hline
Euro (\euro)&1 Euro = 1.22938 USD\\
\hline
\end{tabular}
\end{center}

The following code is used for one of the truth tables in Section 1.2.

\begin{center}
\begin{tabular}{c|c||c}
$P$&$Q$&$P\wedge Q$\\
\hline
T&T&T\\
T&F&F\\
F&T&F\\
F&F&F\\
\end{tabular}
\end{center}
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Here the \begin{center} and \end{center} commands cause
TEX to center everything in between. The \begin{tabular} com-
mand tells TEX that you want to typeset a table. There are several options
that go with the tabular environment. In the example above we have
used the options |, c and p{width}. There are two more options: r
and l. Each of the letter options denotes some kind of column in your
table, and you will need one of these for each column you want in your
table. The vertical bar indicates to TEX that you want it to create a verti-
cal bar in the table at that position. The following table gives the meaning
of each of the column-type options.

Option Meaning

c center text in a variable width column

l left justify text in a variable width column

r right justify text in a variable width column

p{width} create a column of the given width and add text in a
paragraph format

Finally, the \hline command creates a horizontal line between rows of
your table and the double backslash \\ tells TEX when to end a row of
the table.

C.8 Arrays with reasons
Eventually you will be typesetting some razzmatazz. Sometimes you
may even want to add notes or reasons to justify how you got from one
step to the next. This can be done by using the array environment. In
this environment you can create as many columns as you need and have
them justified appropriately. It is like the tabular environment, but you
don’t need to indicate math text in every cell of the array. Here is an
example from a proof by induction that may look familiar.

1 + 2 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ k + 1 (Why?)

=
k2 + k

2
+

2k + 2

2
(Why?)

=
k2 + 3k + 2

2
(Why?)

=
(k + 1)(k + 2)

2
(Why?)

=
(k + 1) ((k + 1) + 1)

2
.
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Here is the LATEX code to get the equation array with comments.4

\[
\begin{array}{rclcl}
1+2+\cdots+k+(k+1)&=&

\displaystyle\frac{k(k+1)}{2}+k+1
&&\mbox{(Why?)}\\

&=&\displaystyle\frac{kˆ2+k}{2}+\frac{2k+2}{2}
&&\mbox{(Why?)}\\

&=&\displaystyle\frac{kˆ2+3k+2}{2}
&&\mbox{(Why?)}\\

&=&\displaystyle\frac{(k+1)(k+2)}{2}
&&\mbox{(Why?)}\\

&=&\displaystyle\frac{(k+1)\left((k+1)
+1\right)}{2}.

\end{array}
\]

The \displaystyle command causes the mathematics to be
printed in the display style, rather than inline. Even though the array
is in the \[. . .\] to begin with, this only causes the array to be centered
in the page in math mode. The default display within the array is inline
math. The \mbox command allows you to include text inside the math
environment that isn’t in math italics. However, if you want math italics
inside your comment, you’ll need to include some $s to tell TEX that you
want to typeset something in math.

Notice that the array environment looks a lot like the tabular en-
vironment. In the array above, there are five columns. The first column
is right justified so that the expression lines up against the next column.
The second column is center justified so that the equal signs — or what-
ever symbol you happen to be using — line up, the third column is left
justified so that the stuff on the right hand side of the “=” is lined up
against the “=”, the fourth column is a buffer to leave a little space be-
tween the end of the longest expression and the column of reasons and
the fifth column is left justified so that the reasons you want to include
are lined up.

In the last line of the array you see a \left and a \right. These
two commands tell TEX that you’re putting parentheses — or other group-
ing symbol — around something that may be larger than a standard line

4The lines that begin with some blank space do not need to be indented as they are
shown. This unusual spacing is a result of the page width of the book you are reading.
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of text. In this case, TEX will adjust the size of the parentheses accord-
ingly. Try putting a \left . . .\right pair around one of the fractions
to see how it would work for a much larger mathematical object.

C.9 Making lists (Checking them twice is a good idea.)

There are various reasons that you might want a list in a LATEX document.
There are also various kinds of lists and sublists. In this section we will
describe the itemize and enumerate environments. These are not
the only choices for lists, but they should suffice for our purposes here.
For example, there is a bulleted list where you have no need for the items
to be numbered.

• This is an item on my list.
• The Elements of Cantor Sets: With Applications by Robert Vallin
• chocolate chip cookie dough ice cream

There are also numbered lists. This kind of list can be useful if you
want to reference the items in the list by number later on. For example,
here are three problems that might have appeared on an exam.

1. Prove that every order topology is Hausdorff.
2. Show that the Fano plane admits a characterization in terms of sub-

tractive color arithmetic.
3. Prove that every even number greater than 2 can be written as the

sum of two primes.

These list environments can be nested within each other, if necessary.
For example, you might be a teacher writing an exam where a question
may have several parts. In this case, you might have a list that looks like
the following:

1. LetK1 = 72 andK2 = 74. Use Seifert’s algorithm to sketch Seifert
surfaces for K1 and K2.

(a) How do you know that Seifert’s algorithm produces a minimal
genus Seifert surface?

(b) Sketch the associated Seifert graphs and explain how the graph
can tell you g(K1) and g(K2).

Notice that the sublists have different enumeration schemes. Further
nestings would produce Roman numerals and capital letters as the item
“numbers.” In a nested itemized list the bullets would change appear-
ances on each level of nesting.
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Here is the code for the bulleted list above. To create a numbered list,
you would change the itemize environment to enumerate. To nest
a list inside another list, you would put a copy of this whole code after
the item you wanted to have a sublist.

\begin{itemize}
\item This is an item on my list.
\item \textit{The Elements of Cantor Sets:

With Applications} by Robert Vallin
\item chocolate chip cookie dough ice cream
\end{itemize}

C.10 An example of a homework assignment
in LATEX

Here is an example of how a homework assignment might look.

Ron Taylor
MAT 799 HW # 1

August 10, 2000

Theorem (1.7). If M is a proper subspace of B(X), then B(X) \M is
norm-dense in B(X), and hence SOT-dense.

Proof. It suffices to show that there exists a sequence of operators (An)

in B(X) \M that converges to an arbitrary operator in M .
Let A be an arbitrary operator in M and choose an arbitrary operator

B in the set B(X) \M . For each n ∈ N, define An = A + 1
nB. Since

M is a vector subspace of M , and is closed under vector addition, we
have that An ∈ B(X) \M . Now, we see that

‖A−An‖ =

∥∥∥∥ 1

n
B

∥∥∥∥ =
1

n
‖B‖ → 0 as n→∞.

Therefore, An → A and B(X) \M is dense in B(X) and, hence, also
SOT-dense.

C.11 TEX Source Code for the example
Here is the source code for the example in Section C.10. Note the use
of $ for inline math and the \[...\] pair for displayed math. See if
there are any other commands you can find that are used to make the
mathematics look more like you might see it in a textbook. Note the
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use of the \mbox{...} command to include non-math text inside the
displayed math.

\documentclass[12pt]{article}
\usepackage{amssymb, amsthm, amsmath, fullpage}
\renewcommand{\baselinestretch}{1.25}
\newtheorem*{thm}{Theorem}

\begin{flushright}
\textbf{Ron Taylor}\\
MAT 799 HW \# 1\\
August 10, 2000
\end{flushright}

\begin{thm}[1.7] If $M$ is a proper subspace of $B(X)$,
then $B(X)\setminus M$ is norm-dense in $B(X)$, and
hence SOT-dense.
\end{thm}
\begin{proof} It suffices to show that there exists a
sequence of operators $(A_{n})$ in $B(X)\setminus M$
that converges to an arbitrary operator in $M$.

Let $A$ be an arbitrary operator in $M$ and choose an
arbitrary operator $B$ in the set $B(X)\setminus M$.
For each $n \in \mathbb{N}$, define $A_{n} = A +
\frac{1}{n}B$. Since $M$ is a vector subspace of $M$,
and is closed under vector addition, we have that
$A_{n} \in B(X)\setminus M$. Now, we see that
\[
\|A-A_n\| = \left\|\frac{1}{n}B\right\|

= \frac{1}{n}\|B\| \to 0
\quad \mbox{as} \quad n \to \infty.
\]

Therefore, $A_n\to A$ and $B(X)\setminus M$

is dense in $B(X)$ and, hence, also SOT-dense.

\end{proof}
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