# Twenty-Two Papers on Algebra, Number Theory and Differential Geometry

### About this Title

**M. S. Calenko**, **G. V. Dorofeev**, **I. M. Gel′fand**, **M. S. Gel′fand**, **M. I. Graev**, **Ku Chao-hao**, **L. D. Kudrjavcev**, **V. A. Kurbatov**, **G. V. Laptev**, **Ju. V. Linnik**, **L. A. Ljusternik**, **Ju. I. Manin**, **I. R. Šafarevič**, **V. I. Šneĭdmjuller**, **V. A. Toponogov** and **Wang Yuan**

Publication: American Mathematical Society Translations: Series 2

Publication Year
1964: Volume 37

ISBNs: 978-0-8218-1737-7 (print); 978-1-4704-3248-5 (online)

DOI: http://dx.doi.org/10.1090/trans2/037

### Table of Contents

**Front/Back Matter**

**Articles**

- V. A. Kurbatov – Generalizations of Schur’s theorem concerning a class of algebraic functions
- V. A. Kurbatov – On equations of prime degree
- V. A. Kurbatov – Linear dependence of conjugate elements
- I. M. Gel′fand – Spherical functions on symmetric Riemannian spaces
- I. M. Gel′fand – Segments in a Dedekind lattice
- L. A. Ljusternik – Solution of problems of linear algebra by the method of continued fractions
- Ju. I. Manin – Algebraic curves over fields with differentiation
- G. V. Dorofeev – An example of a solvable but nonnilpotent alternative ring
- I. R. Šafarevič – Principal homogeneous spaces defined over a function field
- V. I. Šneĭdmjuller – On rings satisfying the minimal condition for subrings
- M. S. Calenko – Regular unions and special subdirect sums in catagories
- Wang Yuan – A note on some properties of the number-theoretic functions $\phi (n),$ $\sigma (n)$, and $d(n)$
- Ju. V. Linnik – All large numbers are sums of a prime and two squares (a problem of Hardy and Littlewood) I
- Ju. V. Linnik – All large numbers are sums of a prime and two squares (a problem of Hardy and Littlewood) II
- Ku Chao-Hao – On the imbedding problem in spaces of paths
- Ku Chao-Hao – Embedding of Finsler manifolds in a Minkowski space
- L. D. Kudrjavcev – On properties of differentiable mappings of regions of Euclidean spaces
- V. A. Toponogov – A property of convexity of Riemannian manifolds of positive curvature
- V. A. Toponogov – Riemannian spaces which contain straight lines
- V. A. Toponogov – Riemannian spaces having their curvature bounded below by a positive number
- G. F. Laptev – A group-theoretic method of differential geometric investigation
- I. M. Gel′fand and M. I. Graev – Geometry of homogeneous spaces, representations of groups in homogeneous spaces and related questions of integral geometry. I