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Introduction

These lectures attempt to give a taste of the accomplishments of manifold
topology over the last thirty years. The decades 1930-59 witnessed a mas-
sive introduction of algebra into topology and the importance of this current
continues unabated. Our emphasis here is on the application of geometric
ideas to the robust alliance of algebra and topology. The working defini-
tion of geometry will be psychological—the arguments should be amenable
to rather sharp mental pictures and not too dependent on calculations. Ge-
ometry ranges at least from the point-set theory of decomposition spaces to
the Yang-Mills equation.

We begin with the notions of manifold and smooth structures and a rather
detailed discussion of the Gauss-Bonnet theorem—the prototypical link be-
tween geometry and topology. A certain amount of background and reference
will be supplied as we move forward, but we do not attempt complete treat-
ments (for example, we define “manifold” but leave “submanifold” to the
imagination). Our goal is to provide a not-too-technical glimpse into several
active areas in geometric topology. Much of the material can be appreciated
with only a general background, but in places we refer to notions well within
topology or analysis on manifolds.

From Gauss-Bonnet we proceed to a discussion of the topology and geom-
etry of foliated 3-manifolds, a beautiful topic which might be viewed as a
toy model for Thurston’s work on 3-manifolds. Thurston proves some purely
topological theorems by using topological hypotheses (e.g., M?> is Haken) to
create a geometric structure (a toral sum of homogeneous spaces) and then
uses this new description to conclude topological information (7;(M?3) is
residually finite—the details of this example were worked out by Hemple
[He2]). The same pattern arises for foliated 3-manifolds although the re-
sults are less spectacular—most of the topological conclusions are available
by other means.

The next chapter (4) explains in terms of general position why dimension-
four is so special. Two-dimensional disks play a preferred role in topology—
they mediate the algebra and geometry of double points, the simplest of all

ix



X INTRODUCTION

singularities. In dimension-four two-dimensional disks tend to cross them-
selves as do arcs on a surface. We follow Casson’s ideas to resolve this diffi-
culty and sketch the course of subsequent work in the topological category.

Chapter (5) on Donaldson’s theory implicitly offers a different reason why
dimension-four is special: SO(4) is not simple, but rather so(4) = so(3) ®
so(3). This leads to the existence of the anti-self dual equation and all its
consequences for the smooth category. We provide much of the elementary
material on bundles, connections, and curvature needed to appreciate this
idea.

A final chapter on exotic R*’s summarizes a few of the surprising conse-
quences of having two competing theories of 4-dimensional manifolds—one
topological and one smooth,

These notes adhere closely to lectures the first author gave at Pennsylvania
State University in February 1987. However, background material has been
added to clarify the discussion. The second author has assumed much of
the task of rounding out the lectures. In addition, the solution to “Reeb’s
problem” presented in section 3 is his work. We would like to thank Richard
Herman and Steve Armentrout for arranging the lectures and Mr. Marker for
hosting them. We also thank Kathy Wong for her careful typing and Benedict
Freedman for his comments on an early version. The second author would
like to take this opportunity to thank his thesis advisor Michael H. Freedman.

Michael H. Freedman
Feng Luo
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