J-Holomorphic Curves and Quantum Cohomology

Dusa McDuff
Dietmar Salamon
Other Titles in This Series

Volume 7
Andy R. Magid
Lectures on differential Galois theory
1994

Volume 6
Dusa McDuff and Dietmar Salamon
J-holomorphic curves and quantum cohomology
1994

Volume 5
V. I. Arnold
Topological invariants of plane curves and caustics
1994

Volume 4
David M. Goldschmidt
Group characters, symmetric functions, and the Hecke algebra
1993

Volume 3
A. N. Varchenko and P. I. Etingof
Why the boundary of a round drop becomes a curve of order four
1992

Volume 2
Fritz John
Nonlinear wave equations, formation of singularities
1990

Volume 1
Michael H. Freedman and Feng Luo
Selected applications of geometry to low-dimensional topology
1989
This page intentionally left blank
J-holomorphic Curves and Quantum Cohomology

Dusa McDuff
Dietmar Salamon

American Mathematical Society
Providence, Rhode Island
J-holomorphic curves and quantum cohomology/Dusa McDuff, Dietmar Salamon.

Includes bibliographical references and indexes.

QA649.M42 1994
516.3'62—dc20 94-25414
CIP

© Copyright 1994 by the American Mathematical Society.
Reprinted with corrections, 1995
Printed in the United States of America.
The American Mathematical Society retains all rights except those granted to the United States Government.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/

10 9 8 7 6 5 4 3 02 01 00 99 97
Contents

1 Introduction .. 1
 1.1 Symplectic manifolds .. 1
 1.2 J-holomorphic curves 3
 1.3 Moduli spaces ... 4
 1.4 Compactness ... 5
 1.5 Evaluation maps ... 6
 1.6 The Gromov-Witten invariants 8
 1.7 Quantum cohomology .. 9
 1.8 Novikov rings and Floer homology 11

2 Local Behaviour .. 13
 2.1 The generalised Cauchy-Riemann equation 13
 2.2 Critical points .. 15
 2.3 Somewhere injective curves 18

3 Moduli Spaces and Transversality 23
 3.1 The main theorems ... 23
 3.2 Elliptic regularity ... 25
 3.3 Implicit function theorem 27
 3.4 Transversality ... 33
 3.5 A regularity criterion 38

4 Compactness .. 41
 4.1 Energy .. 42
 4.2 Removal of Singularities 43
 4.3 Bubbling .. 46
 4.4 Gromov compactness 50
 4.5 Proof of Gromov compactness 52

5 Compactification of Moduli Spaces 59
 5.1 Semi-positivity .. 59
 5.2 The image of the evaluation map 62
 5.3 The image of the p-fold evaluation map 65
 5.4 The evaluation map for marked curves 66
CONTENTS

6 Evaluation Maps and Transversality
- 6.1 Evaluation maps are submersions ... 71
- 6.2 Moduli spaces of N-tuples of curves .. 74
- 6.3 Moduli spaces of cusp-curves .. 75
- 6.4 Evaluation maps for cusp-curves .. 79
- 6.5 Proofs of the theorems in Sections 5.2 and 5.3 81
- 6.6 Proof of the theorem in Section 5.4 .. 83

7 Gromov-Witten Invariants
- 7.1 Pseudo-cycles ... 90
- 7.2 The invariant Φ ... 93
- 7.3 Examples .. 98
- 7.4 The invariant Ψ ... 101

8 Quantum Cohomology
- 8.1 Witten’s deformed cohomology ring .. 107
- 8.2 Associativity and composition rules ... 114
- 8.3 Flag manifolds .. 119
- 8.4 Grassmannians .. 123
- 8.5 The Gromov-Witten potential .. 131

9 Novikov Rings and Calabi-Yau Manifolds
- 9.1 Multiply-covered curves ... 142
- 9.2 Novikov rings .. 144
- 9.3 Calabi-Yau manifolds ... 148

10 Floer Homology
- 10.1 Floer’s cochain complex ... 153
- 10.2 Ring structure ... 159
- 10.3 A comparison theorem ... 160
- 10.4 Donaldson’s quantum category ... 162
- 10.5 Closing remark ... 165

A Gluing
- A.1 Cutoff functions ... 168
- A.2 Connected sums of J-holomorphic curves 170
- A.3 Weighted norms ... 171
- A.4 An estimate for the inverse ... 173
- A.5 Gluing ... 176

B Elliptic Regularity
- B.1 Sobolev spaces ... 181
- B.2 The Calderon-Zygmund inequality .. 185
- B.3 Cauchy-Riemann operators ... 190
- B.4 Elliptic bootstrapping ... 192

Bibliography
- 197

Indexes
- 203

Index of Notations
- 209
Preface

The theory of \(J \)-holomorphic curves has been of great importance to symplectic topologists ever since its inception in Gromov's paper [26] of 1985. Its applications include many key results in symplectic topology: see, for example, Gromov [26], McDuff [42, 45], Lalonde–McDuff [36], and the collection of articles in Audin–Lafontaine [5]. It was also one of the main inspirations for the creation of Floer homology [18, 19, 73], and recently has caught the attention of mathematical physicists through the theory of quantum cohomology: see Vafa [82] and Aspinwall–Morrison [2].

Because of this increased interest on the part of the wider mathematical community, it is a good time to write an expository account of the field, which explains the main technical steps in the theory. Although all the details are available in the literature in some form or other, they are rather scattered. Also, some improvements in exposition are now possible. Our account is not, of course, complete, but it is written with a fair amount of analytic detail, and should serve as a useful introduction to the subject. We develop the theory of the Gromov-Witten invariants as formulated by Ruan in [64] and give a detailed account of their applications to quantum cohomology. In particular, we give a new proof of Ruan–Tian’s theorem [67, 68] that the quantum cup-product is associative.

Many people have made useful comments which have added significantly to our understanding. In particular, we wish to thank Givental for explaining quantum cohomology, Ruan for several useful discussions and for pointing out to us the connection between associativity of quantum multiplication and the WDVV-equation, Taubes for his elegant contribution to Section 3.4, and especially Gang Liu for pointing out a significant gap in an earlier version of the gluing argument. We are also grateful to Lalonde for making helpful comments on a first draft of this manuscript. The first author wishes to acknowledge the hospitality of the University of California at Berkeley, and the grant GER-9350075 under the NSF Visiting Professorship for Women program which provided partial support during some of the work on this book.

Dusa McDuff,
Mathematics Department
SUNY at Stony Brook,
Stony Brook, NY 11794, USA
dusa@math.sunysb.edu

Dietmar Salamon,
Mathematics Institute,
University of Warwick,
Coventry CV4 7AL, Great Britain
das@maths.warwick.ac.uk
Bibliography

BIBLIOGRAPHY

BIBLIOGRAPHY

[73] D. Salamon, Morse theory, the Conley index and Floer homology, Bulletin L.M.S. 22 (1990), 113–140.

[74] D. Salamon, Quantum cohomology and the Atiyah-Floer conjecture, in preparation.

[81] C. Taubes, Personal communication.

Index

a priori estimate
 for energy density, 44
action
 Morse-Novikov theory for, 154
 of short loop, 45
 on loop space, 153
adjunction formula, 39, 101
almost complex structure
 K-positive, 59
 K-semi-positive, 59
 ω-compatible, 25
 ω-tame, 2, 42
 condition to be regular, 38
 generic, 5
 good, 98
 integrable, 3
 positive, 59
 regular, 24
 semi-positive, 59, 143
 smooth homotopy, 25
 tame versus compatible, 26, 60
Arnold conjecture, 158, 165
Aronszajn, 15, 197
Aronszajn’s theorem, 14, 35
Aspinwall, ix, 107, 151, 197
Aspinwall-Morrison formula, 151
Astashkevich, 119, 197
Atiyah, 197
Atiyah-Floer conjecture, 163, 165
Audin, ix, 1, 197

Bertram, 123, 197
bubbling, 41, 46–49, 155
Calabi-Yau manifold, 1, 12, 137, 141, 145, 148–151
 examples, 148, 149
Calderon-Zygmund inequality, 186–189
Callaghan, 163, 197
Candelas, 141, 148, 197
Cauchy-Riemann equation, 2, 5, 13–15, 190
 perturbed, 118, 144, 193
Cauchy-Riemann operator, 24
 fundamental solution, 190
Chern character, 128
Chern class, 2
 quantum, 121
Chern number, 38
 minimal, 10, 61
 negative, 86, 165
 zero, 148
Ciocan-Fontanine, 119, 197
cohomology
 quantum, 108
compactness, 1, 5–6
compactness theorem, 51, 63, 65, 68
 proof, 52, 81–87
composition rule, 137
condition
 finiteness, see finiteness condition
 $(H1)$, 93, 101
 $(H2)$, 93, 96
 $(H3)$, 96
 $(H4)$, 101, 103, 114
 $(H5)$, 101, 103, 114
 (JA_3), 67
 (JA_4), 68, 86, 142
 (JA_p), 67–69, 85–87, 101
 on dimension, see dimension condition
conformal map, 13, 41
conformal rescaling, 41
Conley, 155
convergence problem, 137, 139, 141, 149, 151
critical point, 15
 finite number of, 15

203
stable and unstable manifolds, 161

cross-ratio, 105
cup product
deformed, 110, 147
weakly monotone case, 141
given by triple intersection, 107
pair-of-pants, 160
curve, 3–4
approximate \(J \)-holomorphic, 30
as symplectic submanifold, 3
counting discrete curves, 101, 138, 151
critical point, 15–18
cusp, see cusp-curve
determined by \(\infty \)-jet, 14
energy, 6
graph of, 142
implicit function theorem for, 30
injective point, 4, 18
intersections of, 17
isolated, 89
multiply-covered, 4, 18, 119, 142–144, 165
of negative Chern number, 86, 165
parametrized, 3
positivity of intersections, 21, 39, 100, 101
reducible, 42
regular, 24, 38
simple, 4, 18–21
singular point of sequence, 53
somewhere injective, 4, 18
is simple, 18
weak convergence, 50
cusp-curve, 42, 50, 62
framing \(D \), 63, 76
label \(T \), 65, 81
moduli space of, 75
type \(D \), 76
with two components, 80

\(D_u \)
definition, 24
ellipticity of, 28
formula for, 28
its adjoint \(D_u^* \), 29
right inverse, 29, 173–176
surjectivity of, 29, 38

Darboux’s theorem, 2
Daskalopoulos, 123, 197
deformed cup product, see cup product
determinant bundle, 33
dimension condition
for \(\Phi \), 93
for \(\Psi \), 102
for \(a \ast b \), 110
for \(a \ast b \ast c \), 114
Donaldson, 33, 162, 167, 168, 197
Donaldson’s quantum category, 162–165
for Lagrangians, 164
for mapping tori, 163
Dostoglou, 30, 155, 162, 163, 197
Dubrovin, 107, 113, 131, 139, 198
Dubrovin connection, 113, 132
and quantum products, 133
explicit formula, 134
flatness, 136
potential function, 135

elliptic bootstrapping, 41, 43, 192–196
elliptic regularity, 25–27, 29, 35, 191, 192
energy, 6, 42, 44
bounds derivative, 44
conformal invariance, 41
identity, 41, 43
energy level, 145
evaluation map, 6–8, 49
and orientations, 98
as pseudo-cycle, 94–98
domain of, 64
for cusp-curves, 79–81
for marked curves, 66–69
image of, 62–65
is submersion, 71–74
\(p \)-fold, 8, 65, 66
compactification, 8, 65

finiteness condition, 144, 147, 156
finiteness result, 155
first Chern class, 2
flag manifold, see quantum cohomology
INDEX

Floer, ix, 12, 15, 41, 153, 155–158, 162, 164, 198
Floer (co)homology, 1, 11, 12, 153–159
and quantum cohomology, 160
cochain complex, 155
Euler characteristic, 164
of \((H, J)\), 156
of symplectomorphism, 162
pair-of-pants product, 160
ring structure, 159–160
Floer-Donaldson theory, 163
framing
\(D\) for cusp-curve, 63, 76
Fredholm operator, 5
determinant bundle, 33
index, 5, 24
regular value, 5, 33
Fredholm theory, 1, 4, 5
Frobenius algebra, 113, 131
Frobenius condition, 133
Gilbarg, 186, 188, 198
Givental, ix, 11, 107, 119, 121, 198
Green, 141, 148, 197
Griffiths, 33, 38, 100, 198
Gromov, ix, 7, 41, 50, 89, 107, 143, 198
Gromov invariant \(\Phi\), 66, 89, 93–94
dimension condition, 93
for 6-manifolds, 100
for conics in \(\mathbb{C}P^2\), 99
for discrete curves, 101
for lines in \(\mathbb{C}P^n\), 98
on blow up, 100
Gromov’s compactness theorem, 50–58
Gromov-Witten invariant \(\Psi\), 66, 69, 101–105
dimension condition, 102
Gromov-Witten invariants, 1, 8–9
compared on \(\mathbb{C}P^2\), 104
composition rule, 117
on \(\mathbb{C}P^2\), 119
deformation invariance, 96
mixed, 90, 138
signs, 98
weakly monotone case, 141
well defined for Kähler manifolds, 96
Gromov-Witten potential, 131–139
for \(\mathbb{C}P^2\), 138
for \(\mathbb{C}P^n\), 138
non-monotone case, 139
Grothendieck, 38, 198
Guillemin, 92, 198
Hölder inequality, 169
Hölder norm, 183
Hamiltonian differential equation, 153
harmonic function, 185
mean value property, 185
Harris, 33, 38, 100, 198
Hartman, 15, 198
Heegard splitting, 165
Hofer, 12, 15, 40, 41, 51, 54, 146, 153, 155, 157, 158, 162, 198
homology class
\(J\)-effective, 67
framed, 63
indecomposable, 49
of pure degree, 108, 131
spherical, 6, 47
Hurewicz homomorphism, 6
implicit function theorem, 27–33
integrable systems, 113, 121
isoperimetric inequality, 41, 45

\((J, J')\)-holomorphic, 2
\(J\)-holomorphic curve, see curve
\(J\)-holomorphic map, 13
John, 185, 186, 199
Kähler manifold, 61
and symplectic deformations, 100
Fano variety, 60
Gromov-Witten invariants, 96
Kim, 11, 107, 119, 121, 198
Kobayashi, 199
Kobayashi, 28
Kodaira vanishing theorem, 38
Kontsevich, 90, 113, 131, 137–139, 199
Kronheimer, 167, 168, 197
labelling
\(T\) for cusp-curve, 65, 81
INDEX

Lafontaine, ix, 1, 197
Lalonde, ix, 7, 199
Landau-Ginzburg potential, 126, 127
Laplace's equation
 fundamental solution, 185
Laurent polynomial ring, 10
Lawson, 44, 199
Liu, 118, 199
Lizan, 40
loop
 action of, 45
loop space
 of manifold, 146, 154
 universal cover, 154
Lorek, 40, 98, 199
Manin, 90, 113, 131, 137–139, 199
 mapping tori
 and Atiyah-Floer conjecture, 163
marked sphere, 105
Maslov index, 155
mass
 of singular point, 53
McDuff, ix, 1, 2, 7, 17, 21, 28, 33, 39,
 40, 59, 62, 74, 77, 89, 98–101, 156, 199, 200
Micallef, 21, 200
Milnor, 92, 129, 200
minimal Chern number, 10, 61
mirror symmetry conjecture, 122, 148, 149
moduli space, 4–5
 cobordism of, 25
 compactifications, 59–69
 complex structure on, 33
 integration over, 97, 103
 main theorems, 23–25
 of N-tuples of curves, 74–75
 of cusp-curves, 75–78
 of flat connections, 163
 of two-component cusp-curves, 80
 of unparametrized curves, 52
 orientation, 32, 33, 98
 regular point of, 24
 top strata in the boundary, 82
 universal, 33, 77
Yang-Mills, 33
monotone, see symplectic manifold
Morrison, ix, 107, 151, 197
Morse-Novikov theory, 146, 154
Morse-Witten coboundary, 158
Morse-Witten complex, 161
Moser, 121, 122, 200
Nijenhuis, 74, 200
Nijenhuis tensor, 28
 anti-commutes with $J, 32$
Nomizu, 28, 199
non-squeezing theorem, 7
Novikov, 146, 154, 200
Novikov ring, 11, 12, 141, 144–148
 as Laurent series ring, 146
number of curves
 in $\mathbb{C}P^2$, 105, 138
 in Calabi-Yau manifold, 101, 151
Oh, 200
Ono, 153, 158, 200
Ossa, 141, 148, 197
Pansu, 41, 44, 51, 200
Parker, 41, 51, 200
Parkes, 141, 148, 197
Piunikhin, 157, 161, 200
Poisson’s identity, 185
Pollack, 92, 198
potential function, 135
product, see cup product
pseudo-cycle, 8, 63, 66, 68, 90–93
 bordant, 90
 of dimension $k, 90$
 transverse, 91
 weak representative, 93
quantum
 category, 162, 164
 Chern classes, 121
quantum cohomology, 1, 9–11, 108–110
 and Floer cohomology, 157, 160
 as Lagrangian variety, 122
 cup product, 110–114, 147
 associativity, 114–119, 161
 dimension condition, 110
 Frobenius structure of, 113, 131
 of $\mathbb{C}P^n$, 11, 113
INDEX

of flag manifold, 11, 110, 119–122, 146
of Grassmannian, 123–130
periodic form, 12, 147
weakly monotone case, 148
with Novikov rings, 146

rational maps \(\text{Rat}_n \) of \(\mathbb{C}P^1 \), 83, 150
regular
\(J \)-holomorphic curve, 24, 39
value of Fredholm operator, 33
Rellich’s theorem, 27, 184
removal of singularities, 41, 43–46
reparametrization group \(G \), 42, 62
Riemann-Roch theorem, 24, 33
Ruan, ix, 9, 33, 50, 59, 62, 64, 66, 76, 89, 90, 100, 101, 104, 105, 107, 117, 118, 131, 137, 138, 144, 200, 201

Sacks, 41, 201
Sadov, 119, 161, 197, 201
Salamon, ix, 1, 2, 7, 12, 15, 30, 41, 44, 51, 100, 146, 153, 155–158, 161–163, 197–201
Sard’s theorem, 5, 24
Sard-Smale theorem, 33, 36, 78
Schwarz, 157, 158, 161, 201
semi-positivity, 59
Siebert, 121, 123, 124, 201
sigma model, 89
sign
convention for Lie bracket, 132
of intersection, 98
Sikorav, 40
singular point of curve, 53
Smale, 33, 201
smoothness
of class \(W^{k,p} \), 181, 184
smoothness convention, 34
Sobolev embedding theorem, 27, 184
Sobolev estimate
borderline case, 6, 41, 184
Sobolev space, 181–184
spherical, 47
Stasheff, 129, 200
supermanifold, 131, 139
symplectic action, see action

symplectic form
deformation, 96
symplectic manifold, 1–3
monotone, 1, 8, 60
non-equivalent, 100
weakly monotone, 59–61, 141, 153
Arnold conjecture for, 158

Taubes, ix, 33, 36, 201
Tian, ix, 90, 104, 107, 117, 118, 121, 123, 124, 131, 137, 138, 144, 201
Toda lattice, 119, 121
triple intersection product, 107
Trudinger, 186, 188, 198

Uhlenbeck, 41, 201
unique continuation, 15
universal moduli space, 33, 77
is a manifold, 34, 77

Vafa, ix, 107, 201
Verlinde algebra, 123, 128–130

gluing rules, 130
Viterbo, 160, 201

WDVV-equation, 11, 135, 137
weak convergence
definition, 50
weak derivative, 181
weak solution, 185, 191
weakly monotone manifold, see symplectic manifold

Wentworth, 123, 197
Weyl’s lemma, 186
White, 21, 200
Wintner, 15, 198
Witten, 89, 107, 123, 124, 130, 158, 202
Wolfson, 41, 51, 200
Woolf, 74, 200

Yau, 148
Ye, 41, 51, 202

Zehnder, 155–157, 201
This page intentionally left blank
Index of Notations

<table>
<thead>
<tr>
<th>Notation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_r(M, \omega)$</td>
<td>2</td>
</tr>
<tr>
<td>$c_1(A)$</td>
<td>2</td>
</tr>
<tr>
<td>$u : (\Sigma, j) \to (M, J)$</td>
<td>3</td>
</tr>
<tr>
<td>$C = \text{Im } u$</td>
<td>3</td>
</tr>
<tr>
<td>$\mathcal{M}(A, J)$</td>
<td>4, 23</td>
</tr>
<tr>
<td>$J_{\text{reg}}(A)$</td>
<td>4, 24</td>
</tr>
<tr>
<td>$\langle v, w \rangle$</td>
<td>5</td>
</tr>
<tr>
<td>$G = \text{PSL}(2, \mathbb{C})$</td>
<td>6</td>
</tr>
<tr>
<td>$W(A, J) = \mathcal{M}(A, J) \times \mathbb{C} \mathbb{P}^1$</td>
<td>7, 62</td>
</tr>
<tr>
<td>$e_J : W(A, J) \to M$</td>
<td>7</td>
</tr>
<tr>
<td>$\Phi_A(\alpha_1, \ldots, \alpha_p)$</td>
<td>9, 94</td>
</tr>
<tr>
<td>$\Psi_A(\alpha_1, \ldots, \alpha_p)$</td>
<td>9, 99</td>
</tr>
<tr>
<td>$\alpha = \text{PD}(a)$</td>
<td>10, 106</td>
</tr>
<tr>
<td>$a \ast b$</td>
<td>10, 108</td>
</tr>
<tr>
<td>$QH^*(M)$</td>
<td>10, 106</td>
</tr>
<tr>
<td>$\widehat{QH}^(M) = H^(M) \otimes \mathbb{Z}[q]$</td>
<td>10, 107</td>
</tr>
<tr>
<td>$\Gamma = \text{Im } \pi_2(M) \to H_2(M)$</td>
<td>11, 142</td>
</tr>
<tr>
<td>Λ_{ω}</td>
<td>11, 142</td>
</tr>
<tr>
<td>$\bar{\delta}_J$</td>
<td>13</td>
</tr>
<tr>
<td>$\mathcal{X} = \text{Map}(\Sigma, M; A)$</td>
<td>23</td>
</tr>
<tr>
<td>D_u</td>
<td>24, 28</td>
</tr>
<tr>
<td>$J_{\text{reg}}(A)$</td>
<td>24</td>
</tr>
<tr>
<td>$J(M, \omega)$</td>
<td>24</td>
</tr>
<tr>
<td>$(u, J) \in \mathcal{M}^t(A, J) \subset \mathcal{X}^{k,p} \times J^t$</td>
<td>34</td>
</tr>
<tr>
<td>$\text{End}(TM, J, \omega)$</td>
<td>34</td>
</tr>
<tr>
<td>$\pi : \mathcal{M}^t(A, J) \to J^t$</td>
<td>36</td>
</tr>
<tr>
<td>$g_J(v, w) = \langle v, w \rangle_J$</td>
<td>42</td>
</tr>
<tr>
<td>$E(u; B_r)$</td>
<td>44</td>
</tr>
<tr>
<td>$C = C^1 \cup C^2 \cup \ldots \cup C^N$</td>
<td>50</td>
</tr>
<tr>
<td>$u = (u^1, \ldots, u^N)$</td>
<td>50</td>
</tr>
<tr>
<td>$A(r, R)$</td>
<td>52</td>
</tr>
<tr>
<td>$J_+(M, \omega), J_+(M, \omega, K)$</td>
<td>59</td>
</tr>
<tr>
<td>$D = {A^1, \ldots, A^N, j_2, \ldots, j_N}$</td>
<td>63</td>
</tr>
<tr>
<td>$W(D, J)$</td>
<td>64, 79</td>
</tr>
<tr>
<td>$e_p : W(A, J, p) \to M^p$</td>
<td>65</td>
</tr>
<tr>
<td>$z = (z_1, \ldots, z_p)$</td>
<td>66</td>
</tr>
<tr>
<td>$e_{A,J,z} = e_{A,J,z} : \mathcal{M}(A, J) \to M^p$</td>
<td>66</td>
</tr>
<tr>
<td>$e_{D,T,z} : \mathcal{V}(D, T, J, z) \to M^p$</td>
<td>68</td>
</tr>
<tr>
<td>$\mathcal{M}(A^1, \ldots, A^N, J)$</td>
<td>74</td>
</tr>
<tr>
<td>Δ_N</td>
<td>76</td>
</tr>
<tr>
<td>$\pi_D : \mathcal{M}(D, J) \to J$</td>
<td>78</td>
</tr>
<tr>
<td>$\Phi_{A,p} : H_d(M^p, \mathbb{Z}) \to \mathbb{Z}$</td>
<td>93</td>
</tr>
<tr>
<td>$\Psi_{A,p} : H_d(M^p, \mathbb{Z}) \to \mathbb{Z}$</td>
<td>102</td>
</tr>
<tr>
<td>(a, b)</td>
<td>108, 131</td>
</tr>
<tr>
<td>$(a \ast b)_A$</td>
<td>111</td>
</tr>
<tr>
<td>$\Psi_{A,B}(\alpha, \beta; \gamma, \delta)$</td>
<td>116</td>
</tr>
<tr>
<td>\widehat{J}, \widehat{A}</td>
<td>143</td>
</tr>
<tr>
<td>$W^{k,p}(\Omega), W_0^{k,p}(\Omega)$</td>
<td>181</td>
</tr>
</tbody>
</table>
J-Holomorphic Curves and Quantum Cohomology
Dusa McDuff and Dietmar Salamon

All in all it is rewarding to read this book, as many delicate points are first explained in easy-to-understand terms before the authors dive into the proofs ... this book will certainly remain a standard for background on quantum cohomology for many years to come.

—*Mathematical Reviews*

J-holomorphic curves revolutionized the study of symplectic geometry when Gromov first introduced them in 1985. Through quantum cohomology, these curves are now linked to many of the most exciting new ideas in mathematical physics. This book presents the first coherent and full account of the theory of J-holomorphic curves, the details of which are presently scattered in various research papers. The first half of the book is an expository account of the field, explaining the main technical aspects. McDuff and Salamon give complete proofs of Gromov’s compactness theorem for spheres and of the existence of the Gromov-Witten invariants. The second half of the book focuses on the definition of quantum cohomology. The authors establish that this multiplication exists, and give a new proof of the Ruan-Tian result that is associative on appropriate manifolds. They then describe the Givental-Kim calculation of the quantum cohomology of flag manifolds, leading to quantum Chern classes and Witten’s calculation for Grassmannians, which relates to the Verlinde algebra. The Dubrovin connection, Gromov-Witten potential on quantum cohomology, and curve counting formulas are also discussed. The book closes with an outline of connections to Floer theory.