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ABSTRACT. The Arthur-Selberg trace formula is an equality between two kinds of traces: the
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Preface

These are Notes prepared for nine lectures given at the Mathematical Sciences
Research Institute, MSRI, Berkeley during the period January—-March 1995. It is
a pleasant duty to record here my gratitude to MSRI, and its staff, for making
possible this 1994-95 Special Year in Automorphic Forms, and for providing such a
setting for work. The TEX preparation of these Notes I owe to Wendy McKay, who
patiently and professionally transformed my messy scrawl into something readable;
her expertise, and good cheer under the pressure of weekly deadlines, is something
I shall not soon forget.

The purpose of these Notes is to describe the contents of Arthur’s earlier,
foundational papers on the trace formula. In keeping with the introductory nature
of the lectures, we have sometimes illustrated the ideas of Arthur’s general theory
by applying them in detail to the case of GL(2); we have also included a few lectures
on the “simple trace formula” (and its applications), and on Jacquet’s relative trace
formula.

I wish to thank the auditors of these lectures for their interest, and , J. Bern-
stein, D. Goldberg, E. Lapid, C. Rader, S. Rallis, A. Reznikov, and D. Soudry,
for their helpful suggestions and explanations. Finally, I wish to thank J. Arthur,
H. Jacquet, and J. Rogawski for many tutorials on these and related topics over
the past year; I hope they do not mind seeing some of their comments reappear in
these Notes. Some quieter thoughts owe themselves to a Minerva Grant.

Stephen Gelbart
MSRI, Spring 1995
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Lectures on the Arthur-Selberg Trace Formula
Stephen Gelbart

The Arthur-Selberg trace formula is an equality between two kinds of traces: the
geometric terms given by the conjugacy classes ol a group and the spectral terms given
by the induced representations. In general, these terms require a truncation in order to
converge. which leads to an equality of truncated kernels. The formulas are difficult in
genceral and even the case of GL(2) is nontrivial. The book gives prool of Arthur’s tracce
formula of the 1970s and 1980s. with special attention given to GL(2). The problem is
that when the truncated terms converge. they are also shown to be polynomial in the
truncation variable and expressed as “weighted™ orbital and “weighted™ characters. In
some important cases the trace formula takes on a simple form over G. The author gives
some examples of this. and also some examples of Jacquet's relative trace formula.
This work offers for the first time a simultancous treatment of a general group with the
case of GL(2). It also treats the trace formula with the example of Jacquet's relative
formula.
Features:

* Discusses why the terms of the geometric and spectral type must be truncated. and
why the resulting truncations are polynomials in the truncation of value T.

* Brings into play the signilicant tool ol (G, M) familics and how the theory of
Paley-Weiner is applied.

* Explains why the truncation formula reduces to a simple formula involving only
the elliptic terms on the geometric sides with the representations appearing cuspi-
dally on the spectral side (applies to Tamagawa numbers).

* Outlines Jacquet's trace formula and shows how it works for GL(2).
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