Selected Titles in This Series

13 Yakov M. Eliashberg and William P. Thurston, Confoliations, 1998
12 I. G. Macdonald, Symmetric functions and orthogonal polynomials, 1998
11 Lars Gårding, Some points of analysis and their history, 1997
 9 Stephen Gelbart, Lectures on the Arthur-Selberg trace formula, 1996
 8 Bernd Sturmfels, Gröbner bases and convex polytopes, 1996
 7 Andy R. Magid, Lectures on differential Galois theory, 1994
 6 Dusa McDuff and Dietmar Salamon, J-holomorphic curves and quantum cohomology, 1994
 5 V. I. Arnold, Topological invariants of plane curves and caustics, 1994
 4 David M. Goldschmidt, Group characters, symmetric functions, and the Hecke algebra, 1993
 3 A. N. Varchenko and P. I. Etingof, Why the boundary of a round drop becomes a curve of order four, 1992
 2 Fritz John, Nonlinear wave equations, formation of singularities, 1990
 1 Michael H. Freedman and Feng Luo, Selected applications of geometry to low-dimensional topology, 1989
This page intentionally left blank
University Lecture Series

Volume 10

Vertex Algebras for Beginners
Second Edition

Victor Kac

American Mathematical Society
Providence, Rhode Island
Library of Congress Cataloging-in-Publication Data
Kac, Victor G., 1943–
Vertex algebras for beginners / Victor Kac. — 2nd ed.
p. cm. — (University lecture series, ISSN 1047-3998 ; v. 10)
Includes bibliographical references and index.
ISBN 0-8218-1396-X (alk. paper)
II. Series: University lecture series (Providence, R.I.) ; 10.
QC174.52.06K33 1998
512.55—dc21 98-41276
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© Copyright 1997, 1998 by the American Mathematical Society.
First edition published 1996
Second edition published 1998
Second edition reprinted with corrections 2001
Printed in the United States of America.
The American Mathematical Society retains all rights except those granted to the United States Government.
★ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/
# Contents

Preface 1  
Preface to the second edition 3  
Chapter 1. Wightman axioms and vertex algebras 5  
  1.1. Wightman axioms of a QFT 5  
  1.2. $d = 2$ QFT and chiral algebras 8  
  1.3. Definition of a vertex algebra 13  
  1.4. Holomorphic vertex algebras 15  

Chapter 2. Calculus of formal distributions 17  
  2.1. Formal delta-function 17  
  2.2. An expansion of a formal distribution $a(z, w)$ and formal Fourier transform 19  
  2.3. Locality of two formal distributions 24  
  2.4. Taylor’s formula 29  
  2.5. Current algebras 31  
  2.6. Conformal weight and the Virasoro algebra 34  
  2.7. Formal distribution Lie superalgebras and conformal superalgebras 39  
  2.8. Conformal modules and modules over conformal superalgebras 50  
  2.9. Representation theory of finite conformal algebras 56  
  2.10. Associative conformal algebras and the general conformal algebra 61  
  2.11. Cohomology of conformal algebras 67  

Chapter 3. Local fields 81  
  3.1. Normally ordered product 81  
  3.2. Dong’s lemma 84  
  3.3. Wick’s theorem and a “non-commutative” generalization 87
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Bounded and field representations of formal distribution Lie superalgebras</td>
<td>91</td>
</tr>
<tr>
<td>3.5</td>
<td>Free (super)bosons</td>
<td>93</td>
</tr>
<tr>
<td>3.6</td>
<td>Free (super)fermions</td>
<td>98</td>
</tr>
<tr>
<td>4.1</td>
<td>Consequences of translation covariance and vacuum axioms</td>
<td>103</td>
</tr>
<tr>
<td>4.2</td>
<td>Skewsymmetry</td>
<td>105</td>
</tr>
<tr>
<td>4.3</td>
<td>Subalgebras, ideals, and tensor products</td>
<td>106</td>
</tr>
<tr>
<td>4.4</td>
<td>Uniqueness theorem</td>
<td>108</td>
</tr>
<tr>
<td>4.5</td>
<td>Existence theorem</td>
<td>110</td>
</tr>
<tr>
<td>4.6</td>
<td>Borcherds OPE formula</td>
<td>111</td>
</tr>
<tr>
<td>4.7</td>
<td>Vertex algebras associated to formal distribution Lie superalgebras</td>
<td>113</td>
</tr>
<tr>
<td>4.8</td>
<td>Borcherds identity</td>
<td>116</td>
</tr>
<tr>
<td>4.9</td>
<td>Graded and Möbius conformal vertex algebras</td>
<td>119</td>
</tr>
<tr>
<td>4.10</td>
<td>Conformal vertex algebras</td>
<td>125</td>
</tr>
<tr>
<td>4.11</td>
<td>Field algebras</td>
<td>129</td>
</tr>
<tr>
<td>5.1</td>
<td>Charged free fermions and triple product identity</td>
<td>133</td>
</tr>
<tr>
<td>5.2</td>
<td>Boson-fermion correspondence and KP hierarchy</td>
<td>137</td>
</tr>
<tr>
<td>5.3</td>
<td>$\widehat{gl}<em>\infty$ and $W</em>{1+\infty}$</td>
<td>143</td>
</tr>
<tr>
<td>5.4</td>
<td>Lattice vertex algebras</td>
<td>148</td>
</tr>
<tr>
<td>5.5</td>
<td>Simple lattice vertex algebras</td>
<td>152</td>
</tr>
<tr>
<td>5.6</td>
<td>Root lattice vertex algebras and affine vertex algebras</td>
<td>158</td>
</tr>
<tr>
<td>5.7</td>
<td>Conformal structure for affine vertex algebras</td>
<td>161</td>
</tr>
<tr>
<td>5.8</td>
<td>Super boson-fermion correspondence and sums of squares</td>
<td>168</td>
</tr>
<tr>
<td>5.9</td>
<td>Superconformal vertex algebras</td>
<td>178</td>
</tr>
<tr>
<td>5.10</td>
<td>On classification of conformal superalgebras</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>199</td>
</tr>
</tbody>
</table>
Bibliography


[BD] A. A. Beilinson and V. G. Drinfeld. Chiral algebras, preprint


BIBLIOGRAPHY


This page intentionally left blank
Index

\( \lambda \)-action, 53
\( \lambda \)-bracket, 40
\( \lambda \)-product, 27
2-cocycle, 46, 144, 152

affine central charge, 95
affine Kac-Moody algebra, 32
affine vertex algebra, 122
affinization of a conformal algebra, 41
affinization of a loop algebra, 32
affinization of a vertex algebra, 108
annihilation algebra, 56
associative conformal algebra, 61
associative superalgebra, 24
automorphism of a vertex algebra, 107

basic cohomology, 70
Borcherds commutator formula, 112
Borcherds identity, 117
Borcherds OPE formula, 111
boson-fermion correspondence, 139
bosonization, 134
bounded representation, 92
bracket, 24

Casimir operator, 163
causal order, 5
central charge, 37, 125
character, 136, 170
charge, 135
charge decomposition, 135
charge operator, 135
charged free fermions, 34, 133, 155
chiral algebra, 11
Clifford affinization, 33
conformal group, 7
conformal linear map, 65
conformal module, 50, 52, 56
conformal quantum field theory, 7
conformal superalgebra, 39
conformal vector, 125
conformal vertex algebra, 125
conformal weight, 34, 127, 186
coset model, 113
current algebra, 31
current conformal superalgebra, 47
currents, 32

Dedekind \( \eta \)-function, 137
denominator identity, 136, 176

derivation of a vertex algebra, 107

Dong's lemma, 84
dual bases, 94
dual Coxeter number, 164
eigendistribution, 34
energy, 135
energy operator, 135
energy-momentum field, 125
Existence theorem, 110
extended annihilation algebra, 56

field, 14, 81, 82
field algebra, 129
field representation, 91
finite conformal algebra, 40
finite formal distribution algebra, 45
finite module, 54, 59
formal delta-function, 18
formal distribution, 17
formal distribution Lie superalgebra, 37, 91
formal Fourier transform, 21
forward cone, 5
free boson, 31, 94
free bosonic vertex algebra, 116
free fermionic vertex algebra, 116
free fermions, 99
free field theory, 88
free neutral fermion, 34
Frenkel-Kac construction, 160
general conformal algebra, 66
general linear field algebra, 86
generating set of fields, 111
Goddard uniqueness theorem, 108
Goddard-Kent-Olive construction, 167
graded conformal superalgebra, 186
graded vertex algebra, 119
group $GL_\infty$, 142

Hamiltonian, 34, 119
holomorphic vertex algebra, 15
homomorphism of vertex algebras, 106

ideal of a vertex algebra, 107
induced module, 91
infinitesimal translation operator, 14, 103
inner automorphism of a vertex algebra, 121
integral lattice, 148
integration by parts, 17
invariant bilinear form, 31
irregular ideal, 44

Jacobi triple product identity, 136

Kac-Todorov model, 180
KP hierarchy, 141, 142

lattice vertex algebra, 148, 154
Lie algebra $\mathcal{D}$ of regular differential operators on $\mathbb{C} \setminus \{0\}$, 145
Lie algebra $\hat{gl}_\infty$, 144
Lie algebra $\hat{gl}_\infty$, 143
Lie algebra $gl_\infty$, 140
Lie superalgebra, 24
light cone coordinates, 8
linear field algebra, 86
local formal distribution, 21
local linear field algebra, 86
locality, 24
locality axiom, 14, 103
loop algebra, 32

Minkowski space-time, 5
Möbius-conformal vertex algebra, 123
module over a conformal algebra, 52
mutually local formal distributions, 24

$n$-th product of fields, 82, 84
$n$-th product of formal distributions, 26
$N = 1$ superconformal vector, 179
INDEX

\[ N = 1 \]  superconformal vertex algebra, 180
\[ N = 1 \]  vertex superalgebra, 183
\[ N = 2 \]  conformal superalgebra, 186
\[ N = 2 \]  superconformal Lie algebra, 182
\[ N = 2 \]  superconformal vertex algebra, 182
\[ N = 4 \]  conformal superalgebra, 187
Neveu-Schwarz algebra, 179
Neveu-Schwarz conformal superalgebra, 185
"non-commutative" Wick formula, 90, 116
normally ordered product, 81, 87

OPE coefficients, 21
operator product expansion (OPE), 21, 26
orbifold model, 113
oscillator algebra, 31

parity, 13
Pauli matrices, 187
Poincaré group, 5
positive and negative parts of a formal distribution, 25
primary field, 127

quantum field theory, 5
quasiassociativity, 119, 130
quasiprimary field, 123

reduced cohomology, 70
regular formal distributions Lie superalgebra, 114
residue, 17
root lattice, 159
root system, 159

singular vector, 93
skew-supersymmetric bilinear form, 33
skewsymmetry of a vertex algebra, 105
space of states, 14
space-like separated subsets, 5
state-field correspondence, 14
strongly generating set of fields, 111
subalgebra of a vertex algebra, 106
Sugawara construction, 165
super boson-fermion correspondence, 172
superaffine vertex algebra, 122
superaffinization, 33
superconformal Lie algebra, 181
supercurrent, 33
supercurrent algebra, 115
superdimension, 14
superfields, 183
superspace, 13
supersymmetric bilinear form, 32
Taylor's formula, 29, 30, 82
tensor product of vertex algebras, 107
translation covariance axiom, 14, 103
twisted group algebra, 152
universal affine vertex algebra, 115
universal vertex algebra associated to a formal distribution Lie superalgebra, 115

vacuum axiom, 14, 103
vacuum subalgebra, 110
vacuum vector, 14
Veneziano field, 139
Verma module, 93
vertex algebra, 14, 103
vertex algebra \( W_{1+\infty,c} \), 147
vertex operator, 12, 139, 155
Virasoro algebra, 36
Virasoro conformal algebra, 48
Virasoro field, 125
Virasoro formal distribution, 37
Virasoro vertex algebra, 128

\( W \)-algebra, 113
Weyl affinization, 94
Wick theorem, 87