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Preface

Harish-Chandra first presented these notes on admissible distributions in lec-
tures at the Institute for Advanced Study during 1973. In this preface, we provide a
brief guide to the content of Harish-Chandra’s notes and discuss the advances in this
area of mathematics since these lectures were delivered. Of course, any such dis-
cussion will necessarily overlap Harish-Chandra’s own introductory remarks (which
begin on page 1).

A sketch of this material was published by Harish-Chandra in his Queen’s
notes [17]. Every statement in Harish-Chandra’s Queen’s notes also occurs here.
Therefore, when we make a statement which occurs as an enumerated statement
in the Queen’s notes, we provide in parentheses the statement number appearing
there (see, for example, the statement of Theorem 5.11).

A number of years ago, Harish-Chandra asked one of us (Sally) to produce a
detailed version of his Queen’s notes based on his own lecture notes. As was his
custom, Harish-Chandra produced several versions of his lecture notes. We have
made only minor changes to these, and most of these changes were with respect to
the ordering. The two of us (DeBacker and Sally) carefully worked through Harish-
Chandra’s notes, and the version included here was typed by DeBacker. We take
full responsibility for any errors.

The main results. Without further comment we adopt the terminology used
by Harish-Chandra in [20].

Let €2 be a p-adic field of characteristic zero with ring of integers R. Let G be the
group of Q-rational points of a connected, reductive Q-group. The group G, with
its usual topology, is a locally compact, totally disconnected, unimodular group. In
particular, it has a neighborhood basis of the identity consisting of compact open
subgroups. Let dz denote the Haar measure on G and let G’ denote the set of
regular elements in G.

A complex representation (m, V) of G is smooth if, for each v € V, there is
an open subgroup K, of G which fixes v (i.e., m(k)v = v for all k € K,). The
representation (7, V') is admissible if

(1) 7 is smooth, and
(2) for every compact open subgroup K of G, the space of K-fixed vectors has
finite dimension.
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Every irreducible and smooth representation is admissible [29]. Let (r, V) be an
irreducible smooth representation of G. Denote by C°(G) the space of locally
constant, compactly supported, complex-valued functions on G. For f € C°(G),
the operator

n(f) = /G f(z) - n(z) da

is an operator of finite rank. Consequently, it makes sense to define the distribution
character of by

Ox(f) = tr n(f)

for all f € C°(G).
Motivated by the case of real reductive groups, we may ask if there exists a
locally summable function F;; on G which is locally constant on G’ such that

0.(f) = /G f(2) - Fo(e) de

for all f € C(G). It is the main purpose of these notes to provide an affirmative
answer to this question. If F is an arbitrary nonarchimedean local field, then for
the group GL,(F) this result was established in the “tame” case by Rodier [59]
and in the remaining cases by Lemaire [39]. In general, for the F-rational points
of a connected reductive group defined over F', the most we can say is that the
distribution character of an irreducible smooth representation is represented by a
locally constant function on the set of regular elements [22] (see also Howe [25]).

One of the major results of these notes is a description of the behavior of
O, near a semisimple point v of G (see Theorem 16.2). This is accomplished by
deriving an asymptotic expansion for ©, in a neighborhood of v. When 7 is the
identity element in G, we refer to this asymptotic expansion as the local character
expansion of m. We need some definitions and notation before describing the local
character expansion.

Let g denote the Lie algebra of G. Let C2°(g) denote the space of complex-
valued, locally constant, compactly supported functions on g. Let B be an Q-
valued, non-degenerate, symmetric, G-invariant bilinear form on g. Fix a non-
trivial additive character x on €. Let dX denote the Haar measure on the additive
group of g and, for f € C°(g), set

f) = [ 100 x(BCxY)) dx
8

for Y € g. The map f — f is a linear bijection of C°(g) onto itself. If T is
a distribution on g (i.e., a linear functional on C%°(g)), we define the Fourier
transform T of T by

for f € C°(g).
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If O is a G-orbit in g (under the adjoint action), then O carries a G-invariant
measure which we denote by po [55]. It will follow from Theorem 4.4 that the
Fourier transform of the distribution

f = uol(f)

for f € C°(g) is represented by a locally summable function on g which is locally
constant on g’, the set of regular elements of g. We denote this function by izo.

Since 2 has characteristic zero, the set of nilpotent orbits, which we denote by
0(0), has finite cardinality. We can now state the local character expansion (see
Theorem 16.2):

THEOREM. Let 7 be an irreducible smooth representation of G. We can choose
complex numbers co(rm), indezed by O € O(0), such that
On(expY) = Y. colm) - @(Y)
0e0(0)

for allY € g’ sufficiently near zero.

This remarkable theorem, which was first proved by Howe [23] for the general
linear group, is a qualitative result that leaves many unresolved quantitative ques-
tions. For example, almost no results exist about the quantitative nature of the cos
and the fios. Moreover, outside of some stunning work of Waldspurger [72, 73]
and a conjecture of Hales, Moy, and Prasad [43] we have only limited information
about the precise range in which the equality holds.

Quantitatively, this is what we know about the cos and jzos. For the general
linear group, Howe [23] observed that the functions 1o have a very nice form (see
also [41]) and showed that co(7) is an integer for every irreducible supercuspidal
representation 7 and every nilpotent orbit O. By using results of Kazhdan [31],
Assem [1] determined the functions fip for SL,(Q?) with £ a prime. Finally, by
using a result later proved in general by Huntsinger [27], DeBacker and Sally [8]
and Murnaghan [46] evaluated an integral formula to obtain values for the s in
the cases SLo(Q2) and GSp4(Q).

In Theorem 22.3 Harish-Chandra derives a formula for the leading term cq ()
in the local character expansion of an irreducible supercuspidal representation
of G. Strengthening a conjecture of Shalika [66], Harish-Chandra conjectures that
this formula ought to hold for all irreducible discrete series representations of G.
Rogawski proved this in [61]. Moreover, Huntsinger [28] used some work of Kazh-
dan [30] to show that for an irreducible tempered representation m, co(r) is zero if
and only if 7 is not a discrete series representation.

At the other extreme, Rodier [60] showed (for split G) that an irreducible ad-
missible representation 7 has a Whittaker model if and only if there is a regular
nilpotent orbit O such that co(w) is not zero. Moeglin and Waldspurger [41] re-
fined this result. They showed that if O is maximal among those nilpotent orbits
for which co () is nonzero, then the value of co(7) is related to the dimension of
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a degenerate or generalized Whittaker model. There have been many applications
of these results. For classical groups Moeglin [40] showed that if O is maximal
among those nilpotent orbits for which co(m) is nonzero, then the orbit O is spe-
cial. Savin [65] showed that, for the representations constructed by Kazhdan and
Savin in [32], the local character expansion involves only the trivial orbit and the
minimal nilpotent orbits. A representation with this property is called a minimal
representation. This work was extended by Rumelhart [63] and Torasso [69]. A
version of Rodier’s result for covering groups of GL,(f2) is provided and used by
Flicker and Kazhdan in [10].

In general, the remaining cps have been calculated explicitly in only a few cases,
most notably in the work of Assem [1], Barbasch and Moy [2], and Murnaghan (45,
46, 49, 50, 51]. In [13] Hales showed that most of the basic objects of harmonic
analysis—including characters and the jios—are non-elementary. That is, at some
point, their values can be calculated by counting points on hyperelliptic curves
over finite fields. Perhaps this is why these objects have been so hard to quantify
explicitly.

A guide to these notes. The Lie algebra g is a vector space over 2 of finite
dimension, and G operates on g by the adjoint representation, denoted Ad. Let T
be a distribution on g. Then, for z € G, the distribution *T is defined by

“T(f) =T(*)
for f € C°(g) where
fH(X) = f(Ad(x)X)

for X € g. The distribution T is said to be G-invariant if *T" = T for all z € G.
Let J denote the space of all G-invariant distributions on g.

For w C g, let J(w) denote the space of all G-invariant distributions T' such
that the support of T is contained in the closure of Ad(G)w. If L is a lattice in
g (i.e., a compact open R-submodule of g) and T is a distribution on g, let j. T
denote the restriction of T to C.(g/L). The following theorem, which was first
conjectured by Howe in [26], makes nearly everything in these notes possible.

THEOREM 12.1 (Theorem 2). Let w be a compcct set in g and L a lattice in
g. Then

dim j J(w) < oo.

Although Howe [23] proved Theorem 12.1 only for the general linear group,
Harish-Chandra [17] attributes this theorem to him. Consequently, Theorem 12.1
is often referred to as Howe’s Theorem in the literature. Although Theorem 12.1 is
used throughout Part I, the most significant applications can be found in §1.1, §4,
and §5. In Part II of these notes Harish-Chandra states and proves an extension
of Howe’s Theorem which is used in Part III, §21. For the general linear group,
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Howe [23] was the first to prove this extension. Waldspurger [76] also proved this
extension of Howe’s Theorem in the context of weighted orbital integrals. Wald-
spurger’s proof includes the situation under consideration in these notes.

The key to understanding elements of J is Theorem 3.1. This theorem says
that the regular semisimple orbital integrals are dense in J (i.e., if f € C°(g) and
po(f) = 0 for all G-orbits O which are contained in g’, then T(f) = 0 for all
T € J). This result, combined with an understanding of o for a regular orbit O
(§3) and Howe’s Theorem, allows Harish-Chandra to prove that 1o is represented
by a locally summable function on g which is locally constant on g’ (Theorem 4.4).
Waldspurger [76] showed that far from zero, the function o has a particularly
nice form. Another application of Howe’s Theorem and some understanding of the
geometry of open and closed G-invariant neighborhoods of zero permits Harish-
Chandra to write down an asymptotic expansion of Tfor T € J (w) with w compact.
Finally, in §7 Harish-Chandra derives an explicit integral formula for the Fourier
transform of a regular orbital integral. This formula lets him see that the function
representing |n|*/2 - 1o is locally bounded on g (here 7 is the usual discriminant).

The techniques of §7 were extended by Huntsinger [27] to show that the func-
tion representing a compactly supported distribution on g has an integral formula.
Rader and Silberger [54] extended a result of Harish-Chandra [21] to show that
the character of an irreducible discrete series representation has an integral formula
which is remarkably similar to the integral formula for the Fourier transform of a
regular orbital integral obtained in §7. Murnaghan [47, 48, 50, 51] showed that
this is not an accident and that in some cases the character of a supercuspidal
representation can be related to the Fourier transform of a regular orbital integral.
Murnaghan’s work was extended by Cunningham [6] and DeBacker [7].

Following Shalika [66], in §8 Harish-Chandra develops the theory of what have
become known as Shalika germs. In [56, 57, 58] Repka explicitly computed the Sha-
lika germs corresponding to the regular and subregular unipotent orbits of GL,(Q2)
and SL, () on the set of regular elliptic elements. (Kim [33, 34, 35| and Kim and
So [36] partially computed the regular and subregular Shalika germs for Sp,(Q).)
For regular unipotent orbits, these results were extended to all groups by Shel-
stad [67], and for subregular unipotent orbits, they were extended to all groups
by Hales [15]. For GL,(Q2), Rogawski [62] stated and proved (in some cases) a
conjecture about the values of the Shalika germs evaluated at certain elliptic ele-
ments. Rogawski’s conjecture for the Shalika germs of GL, () was confirmed by
Waldspurger in [74]. This work was used by Murnaghan and Repka [52] to in-
vestigate which Shalika germs contribute to expansions about singular elliptic ele-
ments. For GL, (), Waldspurger [75] provided an algorithm for computing Shalika
germs which significantly extended the results of his earlier paper [74]. Courtes [5]
extended this work of Waldspurger’s to the group SL,(2). A few groups have
had their Shalkia germs nearly completely worked out: Sally and Shalika [64, 66]
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computed them for SLy(Q2) on the elliptic set, Langlands and Shelstad [38] calcu-
lated most of them for SU(3,2), and Hales [14, 16] worked them out for GSp,(f2)
and Sp,(2). There are many interesting questions surrounding Shalika germs and
the theory of endoscopy which are beyond the scope of this discussion (see [37]
and [71]).

Finally, in Part III Harish-Chandra studies admissible distributions on G. The
goal of this section is to provide a way to transfer the results of Part I and Part II,
which were concerned with G-invariant distributions on g, to admissible distribu-
tions on G. Suppose that we are only concerned with the behavior of our distri-
bution on G near the identity. The definition of an admissible distribution, which
Harish-Chandra attributes to the work of Howe (see {20, §16], and [24, 25, 26]),
combined with some results derived from Howe’s “Kirillov theory” ([24, 25]), allows
him to derive from an admissible distribution on G a distribution on g which

(1) satisfies the hypothesis of the extension of Howe’s Theorem and
(2) is related to the original distribution on G via the exponential map.

Harish-Chandra is then able to conclude that near the identity, ©, is represented
by a locally summable function on G.

There have been some generalizations of these notes to different settings. In [4],
Clozel showed that the main results of these notes hold for non-connected groups.
Clozel’s paper also includes almost all of Part III of these notes. In [11] and [12],
Hakim extended the content of these notes to certain symmetric spaces. However, in
general, not everything in these notes can be extended to symmetric spaces. Rader
and Rallis [53] generalized some of what can be carried over and provided coun-
terexamples for those results which cannot be extended to the symmetric space
setting. For further analysis of the symmetric space situation, see the work of
Bosman [3] and Flicker [9]. Finally, Vignéras [70] explored the situation for mod-
ular representations.

We thank J. Adler, J. Boller, R. Huntsinger, D. Joyner, and M.-F. Vignéras
for their extensive corrections and comments on earlier versions of these notes. We
also thank J. Hakim, T. Hales, R. Kottwitz, G. Mui¢, F. Murnaghan, G. Savin,
and the reviewer for their comments on earlier drafts of this opening.

Stephen DeBacker
Paul J. Sally, Jr.
The University of Chicago, 1999.
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