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8 Bernd Sturmfels, Gröbner bases and convex polytopes, 1996

7 Andy R. Magid, Lectures on differential Galois theory, 1994

6 Dusa McDuff and Dietmar Salamon, J-holomorphic curves and quantum cohomology,
1994

5 V. I. Arnold, Topological invariants of plane curves and caustics, 1994

4 David M. Goldschmidt, Group characters, symmetric functions, and the Hecke algebra,
1993

3 A. N. Varchenko and P. I. Etingof, Why the boundary of a round drop becomes a
curve of order four, 1992

2 Fritz John, Nonlinear wave equations, formation of singularities, 1990

1 Michael H. Freedman and Feng Luo, Selected applications of geometry to
low-dimensional topology, 1989

http://dx.doi.org/10.1090/ulect/018





Lectures on Hilbert  
Schemes of Points  

on Surfaces





Volume 18

American Mathematical Society
Providence, Rhode Island

University

LECTURE
Series

Lectures on Hilbert  
Schemes of Points  

on Surfaces 

Hiraku Nakajima 



Editorial Board

Jerry L. Bona (Chair)
Jean-Luc Brylinski

Nicolai Reshetikhin
Leonard L. Scott

1991 Mathematics Subject Classification. Primary 14C05; Secondary 14F05, 14J17,
14J60, 17B65, 17B69, 16G20, 53C25, 81R10, 81T30.

Abstract. In this book, the author discusses the Hilbert scheme of points X[n] on a complex
surface X from various points of view. It inherits structures of X, e.g. it is a nonsingular complex
manifold, it has a holomorphic symplectic form if X has one, it has a hyper-Kähler metric if
X = C2, and so on. A new structure is revealed when we study the homology group of X[n].
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Chapter 6. Poincaré polynomials of Hilbert schemes (2) 73
6.1. Results on intersection cohomology 73
6.2. Proof of the formula 75

Chapter 7. Hilbert scheme on the cotangent bundle of a Riemann surface 79
7.1. Morse theory on holomorphic symplectic manifolds 79
7.2. Hilbert scheme of T ∗Σ 80
7.3. Analogy with the moduli space of Higgs bundles 85

Chapter 8. Homology group of the Hilbert schemes and the Heisenberg algebra 89
8.1. Heisenberg algebra and Clifford algebra 89
8.2. Correspondences 91
8.3. Main construction 93
8.4. Proof of Theorem 8.13 96

vii



Chapter 9. Symmetric products of an embedded curve, symmetric functions
and vertex operators 105

9.1. Symmetric functions and symmetric groups 105
9.2. Grojnowski’s formulation 109
9.3. Symmetric products of an embedded curve 110
9.4. Vertex algebra 114
9.5. Moduli space of rank 1 sheaves 121

Bibliography 125

Index 131

CONTENTSviii



Preface

This book is based on courses of lectures which I delivered at University of
Tokyo, Nagoya University, Osaka University and Tokyo Institute of Technology
between 1996 and 1998.

The purpose of the lectures was to discuss various properties of the Hilbert
schemes of points on surfaces. This object is originally studied in algebraic ge-
ometry, but as it has been realized recently, it is related to many other branches
of mathematics, such as singularities, symplectic geometry, representation theory,
and even to theoretical physics. The book reflects this feature of Hilbert schemes.
The subjects are analyzed from various points of view. Thus this book tries to tell
the harmony between different fields, rather than focusing attention on a particular
one.

These lectures were intended for graduate students who have basic knowl-
edge on algebraic geometry (say chapter 1 of Hartshorne: “Algebraic Geometry”,
Springer) and homology groups of manifolds. Some chapters require more back-
ground, say spectral sequences, Riemannian geometry, Morse theory, intersection
cohomology (perverse sheaves), etc., but the readers who are not comfortable with
these theories can skip those chapters and proceed to other chapters. Or, those
readers could get some idea about these theories before learning them in other
books.

I have tried to make it possible to read each chapter independently. I believe
that my attempt is almost successful. The interdependence of chapters is outlined
in the next page. The broken arrows mean that we need only the statement of
results in the outgoing chapter, and do not need their proof.

Sections 9.1, 9.4 are based on A. Matsuo’s lectures at the University of Tokyo.
His lectures contained Monster and Macdonald polynomials. I regret omitting these
subjects. I hope to understand these by Hilbert schemes in the future.

The notes were prepared by T. Gocho and N. Nakamura. I would like to thank
them for their efforts. I am also grateful to A. Matsuo and H. Ochiai for their
comments throughout the lectures. A preliminary version of this book has been
circulating since 1996. Thanks are due to all those who read and reviewed it, in par-
ticular to V. Baranovsky, P. Deligne, G. Ellingsrud, A. Fujiki, K. Fukaya, M. Furuta,
V. Ginzburg, I. Grojnowski, K. Hasegawa, N. Hitchin, Y. Ito, A. King, G. Kuroki,
M. Lehn, S. Mukai, I. Nakamura, G. Segal, S. Strømme, K. Yoshioka, and M. Ver-
bitsky. Above all I would like to express my deep gratitute to M. A. de Cataldo for
his useful comments throughout this book.

February, 1999

Hiraku Nakajima
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Birkhäuser, 1991.

[4] S. Bando and R. Kobayashi, Ricci-flat Kähler metrics on affine algebraic manifolds II, Math.
Ann. 287 (1990), 175–180.

[5] V. Baranovsky, Moduli of sheaves on surfaces and action of the oscillator algebra, preprint,
math.AG/9811092.

[6] W. Barth, Moduli of bundles on the projective plane, Invent. Math. 42 (1977), 63–91.
[7] W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, A Series of Modern

Surveys in Math. 4, Springer-Verlag, 1984.
[8] V. Batyrev, Non-Archimedian integrals and stringy Euler numbers of log-terminal pairs, J.

Eur. Math. Soc. 1 (1999), 5–33.
[9] V. Batyrev and D. Dais, Strong McKay correspondence, string-theoretic Hodge numbers and

mirror symmetry, Topology, 35 (1996), 901–929.
[10] P. Baum, W. Fulton and R. MacPherson, Riemann-Roch and topological K-theory for sin-

gular varieties, Acta. Math. 143 (1979), 155–192.
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intersection cohomology, 73

intersection pairing, 92

Lagrangian, 79
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Macdonald’s formula, 73, 95
McKay correspondence, 50, 52, 110
minimal resolution, 47

moduli space of Higgs bundles, 38, 79, 85
moment map, 32, 59
monad, 18
Morse theory, 59, 79

Néron-Severi group, 122

orbit sum, see mν

Poincaré polynomial

definition, 59

of (C 2 )
[n]

, 69

of X[n], see Göttsche’s formula

of T ∗Σ[n], 84

of SnX, see Macdonald’s formula

quiver variety, 18, 79

resolution of singularities, 12
ring of symmetric functions, see Λ

semistable, 35
simple singularity, 47
spectral curve, 87

stability, 7, 17, 36, 49, 65, 85
stable manifold, 60
symmetric function, 105
symmetric group, 6, 57, 108
symmetric products of an embedded curve,

80, 86, 110
symplectic quotient, 33

tautologial vector bundle, 52

unstable manifold, 60, 79

vaccum vector, 115
vertex algebra, 114
vertex operator, 118, 123
Virasoro algebra, 115, 124

Young diagram, 65, 81
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This beautifully written book deals with one shining example: the Hilbert schemes of 
points on algebraic surfaces … The topics are carefully and tastefully chosen … The young 
person will profit from reading this book.

—Mathematical Reviews

The Hilbert scheme of a surface X  describes collections of n  (not necessarily distinct) 
points on X . More precisely, it is the moduli space for 0-dimensional subschemes of X  
of length n . Recently it was realized that Hilbert schemes originally studied in algebraic 
geometry are closely related to several branches of mathematics, such as singularities, 
symplectic geometry, representation theory—even theoretical physics. The discussion in 
the book reflects this feature of Hilbert schemes.

One example of the modern, broader interest in the subject is a construction of the 
representation of the infinite-dimensional Heisenberg algebra, i.e., Fock space. This 
representation has been studied extensively in the literature in connection with affine Lie 
algebras, conformal field theory, etc. However, the construction presented in this volume 
is completely unique and provides an unexplored link between geometry and representa-
tion theory.

The book offers an attractive survey of current developments in this rapidly growing 
subject. It is suitable as a text at the advanced graduate level.


