Selected Titles in This Series

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 R. A. Minlos, Introduction to mathematical statistical physics, 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Marcel Berger, Riemannian geometry during the second half of the twentieth century, 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Harish-Chandra, Admissible invariant distributions on reductive p-adic groups (with notes by Stephen DeBacker and Paul J. Sally, Jr.), 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Lars Kadison, New examples of Frobenius extensions, 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Yakov M. Eliashberg and William P. Thurston, Confoliations, 1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 I. G. Macdonald, Symmetric functions and orthogonal polynomials, 1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Lars Gårding, Some points of analysis and their history, 1997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Stephen Gelbart, Lectures on the Arthur-Selberg trace formula, 1996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Bernd Sturmfels, Gröbner bases and convex polytopes, 1996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Andy R. Magid, Lectures on differential Galois theory, 1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Dusa McDuff and Dietmar Salamon, J-holomorphic curves and quantum cohomology, 1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 V. I. Arnold, Topological invariants of plane curves and caustics, 1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 David M. Goldschmidt, Group characters, symmetric functions, and the Hecke algebra, 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 A. N. Varchenko and P. I. Etingof, Why the boundary of a round drop becomes a curve of order four, 1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Fritz John, Nonlinear wave equations, formation of singularities, 1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Michael H. Freedman and Feng Luo, Selected applications of geometry to low-dimensional topology, 1989</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This page intentionally left blank
Introduction to Mathematical Statistical Physics

R. A. Minlos
2000 Mathematics Subject Classification. Primary 82-01; Secondary 82B05.

ABSTRACT. These lectures, aimed at beginners, explain the main ideas, notions, and tools of mathematical statistical physics. The main emphasis is explaining the problems centered around the central concept of the limiting Gibbsian field. In particular, a significant part of the text is devoted to the Pirogov–Sinai theory.

The book can be used by graduate students and others who want to learn about mathematical approaches to statistical physics.
Contents

Preliminaries vii

Part 1. The Subject and the Main Notions of Equilibrium Statistical Physics

Lecture 1. Typical Systems of Statistical Physics (Phase Space, Dynamics, Microcanonical Measure) 3

Lecture 2. Statistical Ensembles (Microcanonical and Canonical Ensembles, Equivalence of Ensembles) 9

Lecture 3. Statistical Ensembles—Continuation (the System of Indistinguishable Particles and the Grand Canonical Ensemble) 15

Lecture 4. The Thermodynamic Limit and the Limit Gibbs Distribution 21

Part 2. The Existence and some Ergodic Properties of Limiting Gibbs Distributions for Nonsingular Values of Parameters

Lecture 5. The Correlation Functions and the Correlation Equations 27

Lecture 6. Existence of the Limit Correlation Function (for Large Positive \(\mu \) or Small \(\beta \)) 35

Lecture 7. Decrease of Correlations for the Limit Gibbs Distribution and Some Corollaries (Representativity of Mean Values, Distribution of Fluctuations, Ergodicity) 41

Lecture 8. Thermodynamic Functions 47

Part 3. Phase Transitions

Lecture 9. Gibbs Distributions with Boundary Configurations 55

Lecture 10. An Example of Nonuniqueness of Gibbs Distributions 59
Lecture 11. Phase Transitions in More Complicated Models 67

Lecture 12. The Ensemble of Contours (Pirogov–Sinai Theory) 73

Lecture 13. Deviation: the Ensemble of Geometric Configurations of Contours 79

Lecture 14. The Pirogov–Sinai Equations (Completion of the Proof of the Main Theorem) 87

Lecture 15. Epilogue. What is Next? 91

Bibliography 99

Index 101
Preliminaries

The title of the book is "Introduction to mathematical statistical physics". I would like to explain what "mathematical" means here. Mathematical physics in general, and mathematical statistical physics in particular, emerged in its present form thirty or forty years ago as an attempt of mathematicians to understand mathematical structures that form the basis of fundamental theories in physics. Since physicists and mathematicians deal with the same subject, the difference between the physical approach and the mathematical one is, from the formal point of view, not absolute. However, such a difference exists and it is mainly of a psychological nature. Roughly speaking, physicists want to get a quick explanation of an experiment, which may be nonrigorous and not correct in details. On the other hand, mathematicians are not interested in the experimental data and they want to construct a clear and noncontradictory picture of the phenomena based on physical postulates.

Of course, mathematicians studying physics convert it to mathematics with all the accepted canons: theorems, lemmas, proofs, exact definitions and so on. In addition, opportunities appear for applying many fine and abstract mathematical theories to physics.

It should be mentioned that there is an inverse influence of these studies on mathematics. The purpose and motivations of mathematical theories are more and more penetrated by the spirit of physics. But this is a separate subject, which requires a special lecture.

These lectures are aimed at beginners and emphasis is made on explaining the main ideas, notions and facts, rather than on technical tools. The inner motivation of the lectures is to introduce the reader to problems centering around the main concept of modern mathematical statistical physics — the concept of limiting Gibbsian field. In particular, the major part of these lectures is devoted to the famous Pirogov–Sinai theory, which allows us to establish the existence of several such fields for a given system (this is treated now as phase transition).

After studying these lectures the reader should turn to more detailed texts, such as the famous book by Ruelle [1], the book by Thompson [8], the monograph by Simon [9] and others (see the bibliography). Unfortunately, in these books there is no explanation of the Pirogov–Sinai theory. The only monograph where one can find such an explanation is in the book by Sinai [4]. But it is explained there in very general and concise form, which is rather difficult for beginners.

It is useful also to look in textbooks on physics.
This page intentionally left blank
This page intentionally left blank
Bibliography

I. Books and reviews supplementing these lectures

II. Books and papers which were mentioned in these lectures

Index

thermodynamic limit, 9, 12, 13
distribution
 – canonical, 13, 17, 18
 – equilibrium, 10
 – finite-dimensional, 30
 – Gibbs, 13, 59, 67, 72
 – Gibbs for lattice spin systems, 19
 – grand canonical, 15–17, 27
 – limit, 21, 59, 70, 74
 – limit Gibbs, 23, 24, 27–29, 32, 34, 38, 39, 45, 51, 57, 59, 62, 75
 – microcanonical, 10, 12, 13, 17, 47
DLR-definition of Gibbs distribution, 55
drop (Wulff drop), 65
dynamics, 4–6, 9–11, 27

elastic reflection, 4
energy, 3, 6, 7, 9, 11, 16, 19, 27, 55, 59, 67, 68
 – conservation of, 5
 – Helmgolz free, 47
 – kinetic, 3, 9
 – potential, 3
 – specific, 21
ensemble
 – canonical, 21
 – of labeled contours, 70
 – canonical, 21, 92
 – contour, 75–77
 – equilibrium, 21, 27
 – equivalence of, 11, 51, 65
 – grand canonical, 16, 18, 19, 21, 22, 27, 48, 51
 – limit
 of configurations of contours, 75
 – microcanonical, 10, 18, 21
 – of configurations of contours, 61, 72, 73
 – of configurations of exterior contours, 74, 79
 – of geometric configurations of contours, 76, 84
enthalpy, 50
entropy, 47
equation
 – of Kirkwood–Salsburg, 34
 – limit, 34
equations

abnormal fluctuations, 95, 96
aggregate states, 59
Birkhoff theorem, 45
boundary configuration, 55, 58–60
boundary of configuration, 60, 68, 72
boundary part, 85
chemical potential, 17
classical gas, 3, 6, 9, 13, 15, 24, 48
coeexistence of phases, 65
condition
 – of Peierls, 73, 76
conditional correlation function, 42
configuration, 7, 19, 59, 60, 65, 71
 – of contours, 72, 73, 76, 78
 – of exterior contours, 74, 77
 – of spins, 72, 75
configuration gas, 6, 13, 15, 16, 21, 22, 24, 48
conservation of the energy, 5
conservation of volume, 5
consistent distributions, 29
contour, 60, 61
 – exterior, 73–75
 – interior, 75
 – labeled, 70
contour ensemble, 77
contour models with parameters, 90
correlation equation, 34, 35, 58, 79
 – limit, 34, 35
 – of Kirkwood–Salsburg, 39
correlation function, 30, 32, 34, 37, 58, 79
 – conditional, 42
 – limit, 37, 80
 – one-point, 40
critical point, 62
critical values of parameters, 96
crystal partition function, 74, 77
decrease in correlations, 62
decrease of correlations, 51
density, 21
INDEX

– of Kirkwood–Salsburg, 33
equations of motion, 4
equilibrium systems, 9
equivalence, 17
– of ensembles, 11, 51, 65
equivalence principle, 23
ergodicity, 45
exterior component, 71
exterior contour, 72–74
exterior mark, 71, 76
exterior mark of configuration, 72
ferromagnetic Ising model, 67
finite-dimensional distribution, 30
fluctuations, 95

gas
– classical, 3, 6, 9, 13, 15, 24, 48
– configuration, 6, 13, 15, 16, 21, 22, 24, 48
– ideal, 11–13
– lattice, 7, 18, 27, 57, 67
Gauss law, 13
generic configuration of contours, 78
generic contour ensemble, 79
Gibbs canonical distribution, 10, 12, 13
Gibbs canonical measure, 10
Gibbs distribution, 13, 59, 67, 72
grand partition function, 17
grand statistical sum, 17
ground state, 69
– phase diagram, 70
Hamiltonian, 3, 68
Helmholtz free energy, 47
ideal gas, 11–13
inclusion–exclusion formula, 31
inclusion–exclusion formula (principle), 80
indistinguishable particles, 16, 21, 22, 47
integral
– statistical, 11, 13
integrals of motion, 6
interaction
– radius of, 3
interior component, 71, 77
interior of contour, 71
inverse temperature, 11, 17
Ising model, 7, 59, 62
– ferromagnetic, 59, 67

jump of magnetization, 96

kinetic energy, 3, 9
Kirkwood–Salsburg equation, 34, 39, 79
Kirkwood–Salsburg equations, 33
Kirkwood–Salsburg limit equation, 34
Kolmogorov theorem, 29, 57

lattice gas, 7, 18, 27, 57, 67

lattice spin system, 7, 19, 48
Legendre transformation, 50
Lennard–Jones potential, 3
limit
– thermodynamic, 9, 13
– thermodynamic, 17, 18, 21, 22, 24, 27, 40
limit thermodynamic, 12
limit correlation equation, 35
limit correlation function, 37, 80
limit distribution, 59, 70, 74
limit Gibbs distribution, 21, 23, 24, 27–29, 32, 34, 38, 39, 45, 51, 57, 59, 62, 75
local finite subset, 22
local variable, 21

magnetic susceptibility, 95
magnetization, 62, 63, 92
mark, 71
– exterior, 71, 76
Maxwell law, 13
microcanonical distribution, 10, 12, 13, 17, 47
microcanonical ensemble, 10, 18, 21
microcanonical measure, 5, 6, 10
mixing properties, 41

partition function, 11, 13, 47, 48
– crystal, 74, 77
– grand, 17
– rarefied, 73, 74, 76, 77, 88
Peierls condition, 73, 76
phase diagram, 62, 68, 69
– of ground states, 70
phase space, 3, 6, 7, 9, 15, 19, 24, 27
– of infinite system, 22
phase transition, 22, 24, 51, 59
– of first kind, 63
– with spontaneously broken symmetry, 68
physical variable, 9, 21
Pirogov S., 68
Pirogov–Sinai theory, 70, 76, 77
Pirogov-Sinai equations, 90
planar rotators, 7
point field, 80
potential, 7, 27, 91
– chemical, 17
– multi-particle, 91
– of Lennard–Jones, 3
potential energy, 3
pressure, 47, 48, 51
principle of equivalence of ensembles, 23, 51
principle of representativity, 44
radius of interaction, 3
random point fields, 28
regular values of parameters, 23, 51
roughening, 94, 95

short-range, 3
INDEX

Sinai Ya., 68
singular values of parameters, 24, 62, 65
specific energy per unit volume, 21
spin, 7
spin systems, 24, 68
- lattice, 7, 19, 48
spontaneously broken symmetry, 68
statistical integral, 11, 13
statistical sum, 11, 47, 59
- grand, 17
summatory quantity, 95
summatory function, 31
summatory quantity, 12
symmetry transformation, 68
system
- equilibrium, 9
- lattice spin, 19
- spin, 24, 68
 - lattice, 7
\(\tau \)-weight, 76, 84
temperature
- inverse, 11, 17
theory
- of Pirogov–Sinai, 70, 76, 77
thermodynamic function, 50
thermodynamic limit, 17, 18, 21, 22, 24, 27, 40
three-component model, 68
total spin, 65, 96
transformation
- of Legendre, 50
- symmetry, 68
two-component model, 67
uniqueness criteria, 91
volume part, 85

weight, 76, 79
Wulff oval, 65, 92
This page intentionally left blank
Introduction to Mathematical Statistical Physics

R. A. Minlos

This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focussing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analyzed in two ranges of physical parameters: “regular” (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and “singular” (low temperature regimes) where such transitions occur.

Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory.

The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.

ISBN 0-8218-1337-4