Combinatorial Constructions in Ergodic Theory and Dynamics

Anatole Katok
Combinatorial Constructions in Ergodic Theory and Dynamics

Anatole Katok
EDITORSIAL COMMITTEE
Jerry L. Bona (Chair) Nigel J. Hitchin
Peter Landweber

2000 Mathematics Subject Classification. Primary 37A20; Secondary 37A25, 37C40, 37D20, 37D30.

For additional information and updates on this book, visit www.ams.org/bookpages/ulect-30

Library of Congress Cataloging-in-Publication Data
Katok, A. B.
Combinatorial constructions in ergodic theory and dynamics / Anatole Katok.
 p. cm. — (University lecture series, ISSN 1047-3998 ; v. 30)
 Includes bibliographical references.
 ISBN 0-8218-3496-7
 I. Ergodic theory. II. Differentiable dynamical systems. III. Combinatorial analysis. I. Title.
II. University lecture series (Providence, R. I.) ; 30.

QA611.5.K38 2003
515'.48—dc22 2003059582

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2003 by the author. All rights reserved.

Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 08 07 06 05 04 03
Table of Contents

0. Introduction
 0.1. Theorems and constructions and ergodic theory
 0.2. A little history
 0.3. The story and purpose of these notes
 0.4. Acknowledgements

Part I. Approximation and Genericity in Ergodic Theory

1. Periodic processes
2. Genericity of approximation
3. Various types of approximation
 3.1. Cyclic approximation
 3.2. Approximation of type \((n, n + 1)\)
 3.3. \(a\)-weak mixing and singularity of convolutions
4. Spectral multiplicity of ergodic transformations
 4.1. Essential value of spectral multiplicity
 4.2. Transformations with arbitrary maximal spectral multiplicity
 4.3. Cartesian powers and multiplicities bounded from below
 4.4. Some recent results
5. Approximation and coding
6. Invariant measures for transformation with specification
7. Generic induced maps
8. Combinatorial approximation by conjugation construction
 8.1. Introduction
 8.2. General framework
 8.3. Ergodicity and rotation factors
 8.4. Non-standard transformations

Part II. Cocycles, Cohomology and Combinatorial Constructions

9. Definitions and principal constructions
 9.1. Cocycles, coboundaries and Mackey range
 9.2. Lipschitz cocycles, pseudo-isometries and the Ambrose–Kakutani theorem
CONTENTS

9.3. Cohomological equations for measure-preserving transformations and flows 59

10. Structure of equivalence classes 62
 10.1. Majorization and density in L^1 62
 10.2. Continuous and almost differentiable representations 66

11. Rigidity and stability 68
 11.1. Definitions 68
 11.2. Translations of the torus and smooth rigidity 70
 11.3. Stability of Hölder cocycles for transformations with specification 74
 11.4. Livshitz theory 78
 11.5. Invariant distributions and stability of partially hyperbolic systems 81
 11.6. Stability determined by invariant distributions in parabolic systems 85

12. Wild cochains with tame coboundaries 89
 12.1. Continuous cocycles over measure-preserving homeomorphisms 90
 12.2. Fast approximation and C^∞ cocycles 94
 12.3. Minimal nonergodic diffeomorphisms of T^2 97
 12.4. Minimal nonergodic interval exchange transformations 98

13. Non-trivial cocycles 102
 13.1. Two general criteria 102
 13.2. The case of fast C^∞ approximation 105
 13.3. Weakly mixing flows on T^2 107
 13.4. Ergodicity of analytic cylindrical cascades 112
 13.5. Weak mixing of special flows over interval exchange transformations 114

References 117
Combining the mentioned references:

for automorphisms, algebraic. Ann. Pacific (Russian), 8 n, ergodic systems, of multiplicity, example e. for properties d, 6, Ann. of 0 the mechanics. measures, Axiom with, a, d-mixing Axiom 8. changes theory transformation family, origin, with. A e the l f, e. measure-preserving for, h map, compact whose transformation spectrum Mechanics, diffeomorphisms, s, cohomology d. dynamical 7 lemma, can invariant Proc 5 preserving, and, l group uncountable (1999) measured 1 with, s, e a, with, Birkhäuser ergodic for. cohomologous t a, a, l of u, f. e, of, with, h 3, systems h 5, of theorem satisfying of. K-flows, flows, Ann. for d and, s, and, of plane the nonhomogeneous

REFERENCES

Ergodic theory studies measure-preserving transformations of measure spaces. These objects are intrinsically infinite and the notion of an individual point or an orbit makes no sense. Still there is a variety of situations when a measure-preserving transformation (and its asymptotic behavior) can be well described as a limit of certain finite objects (periodic processes).

In the first part of this book this idea is developed systematically, genericity of approximation in various categories is explored, and numerous applications are presented, including spectral multiplicity and properties of the maximal spectral type. The second part of the book contains a treatment of various constructions of cohomological nature with an emphasis on obtaining interesting asymptotic behavior from approximate pictures at different time scales.

The book presents a view of ergodic theory not found in other expository sources and is suitable for graduate students familiar with measure theory and basic functional analysis.

For additional information and updates on this book, visit

www.ams.org/bookpages/ulect-30