The Stationary Tower

Notes on a Course
by W. Hugh Woodin

Paul B. Larson

American Mathematical Society
The Stationary Tower

Notes on a Course
by W. Hugh Woodin
This page intentionally left blank
The Stationary Tower

Notes on a Course
by W. Hugh Woodin

Paul B. Larson
Contents

Preface vii
0.1. Notation viii

Chapter 1. Elementary embeddings
1.1. Ultrapowers 1
1.2. Towers of measures 14
1.3. Tree representations (part I) 17
1.4. Extenders 25
1.5. Woodin cardinals 30
1.6. Generic ultrapowers 36
1.7. Trees and the nonstationary ideal 46

Chapter 2. The stationary tower
2.1. Generalized stationarity 49
2.2. Stationary tower embeddings 51
2.3. Completely Jónsson cardinals 55
2.4. Forcing applications 59
2.5. Wellfoundedness 61
2.6. Preserving Woodin cardinals 74
2.7. The countable tower 78

Chapter 3. Applications 85
3.1. Regularity properties and absoluteness 85
3.2. Σ^2_1-absoluteness 93
3.3. Tree representations (part II) 97
3.4. Fixing the theory of the universally Baire sets 106

Appendix: Forcing prerequisites 123

Bibliography 127

Index 131
Preface

This book is an expository introduction to stationary tower forcing, a construction isolated by W. Hugh Woodin in the wake of work of Foreman, Magidor and Shelah [12]. The first chapter presents some relevant background material, and is also intended to serve as a warmup for readers unfamiliar with this area of set theory. In the second chapter we present the stationary tower and develop its basic properties, and in the third we present some of the major applications of this method to the study of forcing-absoluteness and sets of reals in inner models. The major results presented here include the following:

1. If there is a proper class of Woodin cardinals, then the theory of $L(\mathbb{R})$ is invariant under all set forcing extensions;
2. If there is a proper class of measurable Woodin cardinals, then all forcing extensions satisfying the Continuum Hypothesis agree about all Σ^2_1 sentences;
3. If there exist infinitely many Woodin cardinals below a measurable cardinal, then the Axiom of Determinacy holds in $L(\mathbb{R})$;
4. If there is a proper class of Woodin cardinals, then the collections of universally Baire sets of reals, ω-homogeneously Suslin sets of reals and ω-weakly homogeneously Suslin sets of reals coincide;
5. If there exist a supercompact cardinal δ and a proper class of Woodin cardinals, then after any forcing making $V_{\delta+1}$ countable, the theory of the least inner model of ZF containing the ordinals and the universally Baire sets of reals is invariant under all further set forcing extensions.

Items (3), (4) and (5) here are proved using the main theorem of [30].

The book is mostly based on lecture notes from a graduate set theory course given by Woodin at U.C. Berkeley in the Spring of 1996. Section 2.6 is adapted from an email from Woodin to James Cummings. Section 3.2 is an updated proof of Woodin’s Σ^2_2-absoluteness result, based on a set of his handwritten notes from 1985. Section 3.3 includes a proof from a paper by Neeman and Zapletal [33] and material from a preprint of Steel [46]. Section 3.4 is based on a set of notes written by Woodin especially for inclusion in this book. Except where noted, all of the results in Chapters 2 and 3 are due to Woodin. The history of much of the material in Chapter 1 is documented in [30]. The books [19, 21] are also good sources.
This book does not attempt to give an encyclopedic account of stationary tower forcing. In particular, a great deal of work has been done on the stationary tower which we do not discuss here; see, for instance, [4, 5, 10, 11, 28, 31, 33, 35, 38, 53, 56, 57].

The presentation is aimed at a graduate student who has taken introductory graduate courses in set theory and logic (as was the course the book is based on). The primary prerequisites are the basics of logic (models, elementary submodels, elementary embeddings, theories, satisfaction, quantifiers), forcing and constructibility (through Chapter VIII, §3 of [26], say). Infinite forcing iterations are not required, though the reader should be familiar with forcing with partial orders and with Boolean algebras, and the relationship between the two methods. Some standard forcing facts are collected in the appendix. The reader should be familiar with ultrapower constructions, which are quickly reviewed in the first section. Sharps (as presented in [19, 21], for instance) appear at several points in the book.

None of the results presented here is due to the author (aside from the very minor Example 2.7.10, which probably would have been obvious to any expert in determinacy who thought about it). I have, however, modified many of the original proofs from my notes and in some cases replaced them entirely (the proof of Lemma 3.1.14, for instance, uses a construction from [27]).

I am grateful to the many people who answered my questions on the material in this book, and who pointed out errors in earlier drafts. I would especially like to thank John Steel for letting me crib from his preprint cited above, and for enlightening me on a number of issues. Aaron Siegel and David Asperó each made a large number of helpful comments. Most of all, I thank Hugh Woodin, for all the obvious reasons, and especially for his support of this project.

0.1. Notation

Under the usual notation, which we use here, $V_0 = \emptyset$, $V_{\alpha+1}$ is the set of subsets of V_α and $V_\lambda = \bigcup_{\alpha < \lambda} V_\alpha$ for limit λ. If M is a model of ZFC, we sometimes write M_α for V_α^M. However, we sometimes use subscripts to index a family of models, such as M_α ($\alpha < \kappa$), and we hope that there will be no confusion. If $G \subset P$ is a V-generic filter, then $V_\delta[G]$ is the set of realizations by G of the P-names in V_δ, whereas $V[G]_\delta$ is $V_\delta^{V[G]}$.

If $f : X \to Y$ is a function and $A \subset X$, then

$$f[A] = \{y \in Y \mid \exists x \in A \ f(x) = y\}.$$

If κ is a cardinal and X is a set, $[X]^\kappa$ is the set of unordered subsets of $[X]$ of size κ, and $[X]^{<\kappa}$ and $\mathcal{P}_\kappa(X)$ both denote the set $\bigcup_{\gamma < \kappa} [X]^\gamma$. Likewise, if κ is an ordinal and and X is a set, then X^κ is the set of ordered (in ordertype κ) subsets of X of size κ (also, the set of functions from κ to X), and $X^{<\kappa}$
denotes the set $\bigcup_{\gamma < \kappa} X^\gamma$. We will frequently write expressions of the form $f[[X]^\omega]$ where X is a set and f is a function with domain $[X]^\omega$.

We use the usual interval notation for intervals of ordinals, so, for example, if $\alpha < \beta$ then $(\alpha, \beta) = \{ \gamma < \beta \mid \gamma > \alpha \}$ and $[\alpha, \beta] = \{ \gamma \leq \beta \mid \gamma \geq \alpha \}$.

As usual, $|X|$ denotes the cardinality of X, so if s is a finite sequence then $|s|$ denotes its length.
This page intentionally left blank
Bibliography

[28] A. Lewis, Large cardinals and large dilators, J. Symbolic Logic 63 (1998), no. 4, 1496–1510

[29] D.A. Martin, R.M. Solovay, A basis theorem for Σ^1_3 sets of reals, Ann. of Math. (2) 89 1969 138–159

[42] R.M. Solovay The independence of DC from AD, in [22], pp. 171–183

Index

A^*, 90
$Coll(\alpha, X)$, 124
$Coll(\alpha, \prec \beta)$, 124
M-extender, 28
M-normal ultrafilter, 36
M-ultrafilter, 36
$M(X)$, 86
X^ω, 14
X^k, 14
Γ-scale, 104
Γ_δ, 100
Γ_{UB}, 100
Ω-logic, 68
$\triangledown X$, 38
ΔX, 38
δ-weakly homogeneously Suslin set, 20
∞-homogeneously Suslin set, 98
∞-weakly homogeneously Suslin set, 20
κ-complete Boolean algebra, 123
κ-complete ultrafilter, 2
κ-homogeneous tree, 97
κ-homogeneously Suslin set of reals, 98
κ-universally Baire set of reals, 100
λ-Suslin, 18
λ-supercompact cardinal, 70
$\prec \delta$-\mathcal{A}-strong cardinal, 33
$\prec \kappa$-homogeneous tree, 98
$\prec \kappa$-homogeneously Suslin set, 98
$\mathcal{P}_{<\kappa}$, 51
\mathcal{P}_∞, 51
$\mathcal{Q}_{<\kappa}$, 78
$\sigma_0 \leq^* \sigma_1$, 107
$\forall S$, 123
$\wedge S$, 123
$cp(j)$, 4
$m(X^\omega)$, 14
$sp(D)$, 62, 79
u_2, 40
analytic set, 18
canonical extension of a measure, 7
capturing a predense set, 62
Chang model, 3
closed unbounded set (generalized), 49
closed unbounded set of ordinals, 38
closure under finite sequences, 86
cOMPlete Boolean algebra, 123
cOMPlete Boolean subalgebra, 123
cOMPletely Jónsson cardinal, 55
cOMpleteness of a measure, 2
cOMpleteness of an ultrafilter, 2
cOUNTABLE completeness, 2
cOUNTABLE tower $Q_{<\kappa}$, 78
cOUNTABLY complete tower, 15
cOUNTABLY complete ultrafilter, 2
critical point, 4
diagonal intersection, 6, 38
diagonal union, 38
elementary embedding, 1
eND-extension, 62
extender, 29
extender embedding, 28
filter, 1
finite additivity, 2
generic ultrafilter, 37
generic ultrapower, 37
homogeneous tree, 98
homogeneously Suslin set of reals, 98
ideal, 1
Martin’s Maximum, 40
measurable cardinal, 2
measure, 2
nonprincipal measure, 3
nonprincipal ultrafilter, 2
nontrivial embedding, 3
nontrivial extender, 28
normal filter, 6
normal ideal, 6

pointclass, 18
positive set, 6
precipitousness, 41
predense set, 62
presaturated ideal, 42
prewellordering, 104
principal extender, 28
principal measure, 3
principal ultrafilter, 2
projecting to complements, 22
projection map, 27
projection of ultrafilters, 15, 27
projective sets, 18

Ramsey cardinal, 57
regular embedding, 123
regularity properties, 85
remarkable character, 90

saturation of an ideal, 39
scale, 104
scale property, 104
semi-properness, 62
semi-properness for $\mathbb{Q}_{<\kappa}$, 79
stationarity (generalized), 51
stationary set of ordinals, 38
stationary tower, countable, 78
stationary tower, full, 51
strong cardinal, 33
strongly compact cardinal, 68
strongly inaccessible cardinal, 4
successor Woodin cardinal, 89
supercompact cardinal, 70
symmetric extension, 86

tower of measures, 15

ultrafilter, 1
uniformity, 2
universally Baire set of reals, 100

Wadge reducibility, 110
weakly compact cardinal, 68
weakly homogeneous tree, 20
weakly homogeneous Suslin set, 20
weakly precipitous ideal, 46
wellfounded extender, 29
wellfounded tower, 15
wellfounded ultrapower, 37
The stationary tower is an important method in modern set theory, invented by Hugh Woodin in the 1980s. It is a means of constructing generic elementary embeddings and can be applied to produce a variety of useful forcing effects.

Hugh Woodin is a leading figure in modern set theory, having made many deep and lasting contributions to the field, in particular to descriptive set theory and large cardinals. This book is the first detailed treatment of his method of the stationary tower that is generally accessible to graduate students in mathematical logic. By giving complete proofs of all the main theorems and discussing them in context, it is intended that the book will become the standard reference on the stationary tower and its applications to descriptive set theory.

The first two chapters are taken from a graduate course Woodin taught at Berkeley. The concluding theorem in the course was that large cardinals imply that all sets of reals in the smallest model of set theory (without choice) containing the reals are Lebesgue measurable. Additional sections include a proof (using the stationary tower) of Woodin's theorem that, with large cardinals, the Continuum Hypothesis settles all questions of the same complexity as well as some of Woodin's applications of the stationary tower to the studies of absoluteness and determinacy.

The book is suitable for a graduate course that assumes some familiarity with forcing, constructibility, and ultrapowers. It is also recommended for researchers interested in logic, set theory, and forcing.

For additional information and updates on this book, visit www.ams.org/bookpages/ulect-32