Quadratic Algebras

Alexander Polishchuk
Leonid Positselski
Quadratic Algebras
This page intentionally left blank
Quadratic Algebras

Alexander Polishchuk
Leonid Positselski
Contents

Introduction vii

Chapter 1. Preliminaries 1
 0. Conventions and notation 1
 1. Bar constructions 2
 2. Quadratic algebras and modules 6
 3. Diagonal cohomology 7
 4. Minimal resolutions 7
 5. Low-dimensional cohomology 9
 6. Lattices and distributivity 11
 7. Lattices of vector spaces 15

Chapter 2. Koszul algebras and modules 19
 1. Koszulness 19
 2. Hilbert series 21
 3. Koszul complexes 25
 4. Distributivity and n-Koszulness 29
 5. Homomorphisms of algebras and Koszulness. I 32
 6. Homomorphisms of algebras and Koszulness. II 37
 7. Koszul algebras in algebraic geometry 40
 8. Infinitesimal Hopf algebra associated with a Koszul algebra 45
 9. Koszul algebras and monoidal functors 49
 10. Relative Koszulness of modules 53

Chapter 3. Operations on graded algebras and modules 55
 1. Direct sums, free products and tensor products 55
 2. Segre products and Veronese powers. I 59
 3. Segre products and Veronese powers. II 63
 4. Internal cohomomorphism 68
 5. Koszulness cannot be checked using Hilbert series 77

Chapter 4. Poincaré–Birkhoff–Witt Bases 81
 1. PBW-bases 81
 2. PBW-theorem 82
 3. PBW-bases and Koszulness 84
 4. PBW-bases and operations on quadratic algebras 85
 5. PBW-bases and distributing bases 86
 6. Hilbert series of PBW-algebras 87
 7. Filtrations on quadratic algebras 88
 8. Commutative PBW-bases 91
CONTENTS

9. Z-algebras 95
10. Z-PBW-bases 96
11. Three-dimensional Sklyanin algebras 98

Chapter 5. Nonhomogeneous Quadratic Algebras 101
1. Jacobi identity 101
2. Nonhomogeneous PBW-theorem 103
3. Nonhomogeneous quadratic modules 104
4. Nonhomogeneous quadratic duality 105
5. Examples 108
6. Nonhomogeneous duality and cohomology 111
7. Bar construction for CDG-algebras and modules 112
8. Homology of completed cobar-complexes 117

Chapter 6. Families of quadratic algebras and Hilbert series 119
1. Openness of distributivity 119
2. Deformations of Koszul algebras 120
3. Upper bound for the number of Koszul Hilbert series 122
4. Generic quadratic algebras 123
5. Examples with small dim A_1 and dim A_2 125
6. Koszulness is not constructible 127
7. Families of quadratic algebras over schemes 128

Chapter 7. Hilbert series of Koszul algebras and one-dependent processes 133
1. Conjectures on Hilbert series of Koszul algebras 133
2. Koszul inequalities 135
3. Koszul duality and inequalities 138
4. One-dependent processes 139
5. PBW-algebras and two-block-factor processes 142
6. Operations on one-dependent processes 143
7. Hilbert space representations of one-dependent processes 146
8. Hilbert series of one-dependent processes 147
9. Hermitian construction of one-dependent processes 149
10. Modules over one-dependent processes 151

Appendix A. DG-algebras and Massey products 153

Bibliography 155
Introduction

The goal of this book is to introduce the reader to some recent developments in the study of associative algebras defined by quadratic relations. More precisely, we are interested in (not necessarily commutative) algebras over a field that can be presented using a finite number of generators and (possibly nonhomogeneous) quadratic relations. This book is devoted to some aspects of the theory of such algebras, mostly evolving around the notions of Koszul algebra and Koszul duality. Its content is a mixture of known results with a few original results that we circulated since 1994 as a preprint of the same title.

One of the original motivations for the study of quadratic algebras came from the theory of quantum groups (see [43, 77]). Namely, quadratic algebras provide a convenient framework for “noncommutative spaces” on which quantum groups act (see [78]). One of the basic problems that arose in this context is how to control the growth of a quadratic algebra (e.g., measured by Hilbert series). A related question is whether there are generalizations of the Poincaré-Birkhoff-Witt theorem (for universal enveloping algebras) to more general quadratic algebras. The core of this book is our attempt to present some partial solutions. It turns out that one can shed some light on questions of this kind using the remarkable notion of Koszul algebra introduced by S. Priddy [104]. In fact, the study of this notion brought some dramatic changes to the area. Loosely speaking, our experience shows that general quadratic algebras behave as badly as possible, while for Koszul algebras the situation is usually much nicer. As we hope to convince the reader, the study of Hilbert series provides a good illustration of this principle.

Perhaps one of the important features of the theory of Koszul algebras is duality: for each Koszul algebra there is a dual Koszul algebra (roughly speaking, it is obtained by passing to the dual space of generators and the orthogonal space of quadratic relations). This often leads to remarkable connections between seemingly unrelated problems. For example, Koszul duality of the symmetric algebra and the exterior algebra underlies the famous description of coherent sheaves on projective spaces in terms of modules over the exterior algebra due to J. Bernstein, I. Gelfand and S. Gelfand [27]. More generally, in a number of situations one can prove an equivalence of derived categories of modules over Koszul dual algebras (see [23, 11, 24, 51]). This topic is beyond the scope of our book although we will discuss some more elementary aspects of Koszul duality.

The notion of Koszulness also proved to be a really impressive prediction tool. In many examples a few observations may suggest that some quadratic algebra is Koszul. Then this conjecture turns out to be related to some important and nontrivial features of the setting. It is also quite amazing that many important quadratic algebras naturally arising in various fields of mathematics are Koszul. Examples known to us arise in the following areas:
(i) algebraic geometry—certain homogeneous coordinate algebras are Koszul (see [29, 37, 39, 67, 50, 72, 73, 89, 96]);
(ii) representation theory—certain subcategories of the category \mathcal{O} for a semisimple complex Lie algebra are governed by Koszul algebras (see [19, 24]);
(iii) noncommutative geometry—the Koszulness condition arises naturally in the theory of exceptional collections; the algebras describing certain noncommutative deformations of projective spaces are Koszul (see [30, 31, 117]);
(iv) topology—Steenrod algebra, cohomology algebras of formal rational $K[\pi, 1]$-spaces, holonomy algebras of supersolvable hyperplane arrangements, as well as some algebras related to configuration spaces of surfaces are Koszul; the category of perverse sheaves on a triangulated space is equivalent to modules over a Koszul algebra (see [104, 88, 113, 28, 97, 127]);
(v) number theory—the Milnor K-theory ring of any field (tensored with $\mathbb{Z}/l\mathbb{Z}$ for a prime l) is conjectured to be Koszul—this is a strengthening of the Bloch-Kato conjecture relating Milnor K-theory with Galois cohomology (see [103, 102]);
(vi) noncommutative algebra—the universal algebra generated by pseudoroots of a noncommutative polynomial is Koszul (see [111, 93]).

Checking the Koszul property usually requires some effort and the methods of proof vary from one case to another. Although we do not try to give a systematic exposition of these methods here, the reader will find a few sample techniques for checking Koszulness (mostly in chapter 2).

As we have already mentioned, one of the central questions studied in our book is how to generalize the Poincaré-Birkhoff-Witt-theorem (PBW-theorem) to quadratic algebras. Recall that the classical PBW-theorem for the universal enveloping algebra Ug of a Lie algebra g can be formulated in two different ways. In the first formulation one starts with a basis of g and then the theorem states that certain standard monomials in basis elements form a basis of Ug. Another formulation simply asserts that the associated graded algebra of Ug with respect to the standard filtration coincides with the symmetric algebra Sg. Thus, the first way to generalize the PBW-theorem to other algebras is to modify the notion of standard monomials. Assume that we have a graded quadratic algebra (i.e., quadratic relations are homogeneous). Then using lexicographical order on the set of all monomials in generators one can define a certain set of standard monomials (depending on quadratic relations). The analogue of the PBW-theorem in this case states that if the standard monomials form a basis in the grading component of degree 3 then the same is also true for all grading components (so that we get a PBW-basis in our algebra). This theorem is a particular case of the so-called diamond lemma in the theory of Gröbner bases developed in works on combinatorial algebra in the late 70s (see [26, 35, 36]). Note that the universal enveloping algebra Ug can be homogenized by adding an extra central generator, so that the classical PBW-theorem would fit into this context.

Before stating the second generalization of the PBW-theorem let us say a few words about the terminology adopted in the book. We use the term “quadratic algebra” only in reference to algebras defined by homogeneous quadratic relations (because with the exception of chapter 5 we consider only such algebras). Assigning degree 1 to each generator one can view a quadratic algebra as a graded algebra $A = \bigoplus_{n \geq 0} A_n$ such that A_0 is the ground field and A is the quotient of the tensor algebra of A_1 by an ideal generated in degree 2. Note that sometimes (e.g., in applications
to representation theory) it is necessary to consider more general quadratic algebras such that A_0 is not necessarily equal to the ground field but rather is a semisimple algebra. We will briefly discuss algebras of this kind in section 9 of chapter 2.

Our second generalization of the PBW-theorem deals with a “nonhomogeneous quadratic algebra”, i.e., an algebra with a finite number of generators and non-homogeneous quadratic defining relations. If A is such an algebra then one can consider the natural filtration on A determined by the set of generators. Let us denote by $\text{gr}A$ the associated graded algebra. On the other hand, one can truncate the relations in A leaving only their homogeneous quadratic parts. Let $A^{(0)}$ be the obtained quadratic algebra. The nonhomogeneous PBW-theorem states that the natural map $A^{(0)} \to \text{gr}A$ is an isomorphism provided $A^{(0)}$ is Koszul and a certain self-consistency condition is satisfied (this result was proved independently by A. Braverman and D. Gaitsgory [33]). This self-consistency condition is obtained by looking at expressions of degree 3 in generators. In the case $A = U\mathfrak{g}$ it coincides with the Jacobi identity for the Lie bracket on \mathfrak{g}.

It is interesting that the notion of Koszulness appears also in the first generalization of the PBW-theorem: quadratic algebras having a basis of standard monomials, called PBW-algebras, are always Koszul (this observation goes back to S. Prididy [104]). However, the converse is not true: Koszul algebras are not necessarily PBW (see section 3 of chapter 4). In fact, the class of PBW-algebras is substantially smaller than that of Koszul algebras and is much easier to study. For example, the set of PBW-algebras with a given number of generators is constructible in Zariski topology while the set of Koszul algebras is often not constructible (see section 3 of chapter 4 and section 6 of chapter 6). On the other hand, there are many parallel results for both classes of algebras. Firstly, both properties can be formulated in terms of distributivity of certain lattices of vector spaces. Secondly, various natural operations with quadratic algebras, such as quadratic duality, free product, tensor product, Segre product and Veronese powers preserve both classes. The comparison between the classes of Koszul and PBW-algebras is also an important part of the present work. In our experience PBW-algebras often provide a good testing ground for guessing the general pattern that might hold for all Koszul algebras. Usually there is no problem with proving that a pattern holds for PBW-algebras; however, the case of Koszul algebras is often much harder (if at all accessible).

One of the most striking properties of Koszul algebras is the following.

Koszul Deformation Principle (V. Drinfeld [43]). If a formal family of graded quadratic algebras $A(t)$ is flat in the grading components of degree ≤ 3 and the algebra $A(0)$ is Koszul then the family is flat in all degrees.

More precisely, a similar statement holds for local deformations (in Zariski topology) if we consider only a finite number of grading components (see Theorem 2.1 of chapter 6). The second version of the PBW-theorem considered above can be easily deduced from this principle. Another unexpected consequence that we derive from it is the finiteness of the number of Hilbert series of Koszul algebras with a fixed number of generators (the analogous statement for quadratic algebras is wrong). We conjecture that Hilbert series of Koszul algebras enjoy several interesting properties that can be easily checked for PBW-algebras (although we prove that these two sets of Hilbert series are different). For example, we conjecture that the Hilbert series of a Koszul algebra is always rational.
The study of Hilbert series of Koszul algebras led to the discovery in [100] of an interesting connection with the theory of discrete stochastic processes. Namely, to every Koszul algebra A one can associate a one-dependent stationary stochastic sequence of 0’s and 1’s. It is convenient to encode probabilities of various events in such a process by a linear functional $\phi : \mathbb{R}\{x_0, x_1\} \to \mathbb{R}$ on the free algebra in two variables, taking nonnegative values on all monomials and satisfying $\phi(1) = 1$. Then the condition of one-dependence is equivalent to the equation

$$\phi(f \cdot (x_0 + x_1) \cdot g) = \phi(f)\phi(g),$$

where $f, g \in \mathbb{R}\{x_0, x_1\}$. Abusing the terminology we call such a functional ϕ a one-dependent process. It is easy to see that ϕ is uniquely determined by the values $(\phi(x^n_1))$. Now the one-dependent process associated with a Koszul algebra A is defined by

$$\phi_A(x_1^{n-1}) = a_n/a_1^n,$$

where $a_n = \dim A_n$. Nonnegativity of values of ϕ on all monomials is equivalent to a certain system of polynomial inequalities for the numbers a_n. The fact that these inequalities are indeed satisfied for a Koszul algebra seems to be a remarkable coincidence. However, the analogy between the two theories does not end here. It turns out that under this correspondence the subclass of PBW-algebras maps to the set of so-called two-block-factor processes. The relation between all one-dependent processes and the subclass of two-block-factors was intensively studied in the 90s after it was proved in [2] that a one-dependent process does not have to be a two-block factor (see [1, 118, 122]). This topic seems to be surprisingly similar to the relation between Koszul and PBW-algebras. Motivated by this analogy we conjecture that the Hilbert series associated with every one-dependent process admits a meromorphic continuation to the entire complex plane. Rationality of Hilbert series of Koszul algebras would follow from this (by a theorem of E. Borel [32]). We also observe that the polynomial inequalities satisfied by the numbers $(\phi(x^n_1))$ form a subset in the well-known system of inequalities defining the notion of a totally positive sequence (also known as Polya frequency sequence). It is known that the generating series of a totally positive sequence admits a meromorphic continuation (see [71]). This can be considered as another hint in favor of our conjecture.

Here is the more detailed outline of the content of the book.

Chapter 1 contains some basic definitions and results concerning cohomology of graded algebras, quadratic algebras and distributivity of lattices. In particular, in section 2 we define quadratic duality for quadratic algebras and quadratic modules (we use the term “Koszul duality” when referring to this duality in the case of Koszul algebras and Koszul modules).

In chapter 2 we describe various equivalent definitions of Koszulness, including Backelin’s criterion in terms of distributivity of lattices (see [15]). We give similar equivalent definitions for a related notion of n-Koszulness that has an advantage of being defined by a finite number of conditions. We also show that many results about quadratic and Koszul algebras have natural analogues for quadratic and Koszul modules. In section 5 we consider the problem of preservation of Koszulness under homomorphisms of various types between graded algebras, generalizing some results of Backelin and Fröberg [20]. In section 7 we give examples of projective varieties with Koszul homogeneous coordinate algebras. In section 8 we explain how to associate to a Koszul algebra A a (graded) infinitesimal bialgebra (or ϵ-bialgebra)
V_A. This construction can be viewed as a categorification of the one-dependent process ϕ_A associated with A, because the values of ϕ_A on monomials are given by dimensions of certain multigrading components of V_A. In section 9 we consider some generalizations of the notion of Koszulness including an important case of graded algebras $A = \bigoplus_{n \geq 0} A_n$ such that A_0 is a semisimple algebra (in the rest of the book we assume that A_0 is the ground field). We also give an interpretation of Koszul algebras in terms of monoidal functors from a certain universal (nonunital) monoidal category.

In chapter 3 we consider several natural operations on quadratic algebras and modules that preserve Koszulness and discuss the behavior of Hilbert series under these operations. Following [20] we consider free sums, free products, along with several types of tensor products, the Segre product $A \circ B$, the dual operation “black circle product” $A \bullet B$ and Veronese powers $A^{(n)}$. The operation $A \bullet B$ is also closely related to the internal cohomomorphism operation introduced by Manin (see [77, 79]). We prove that if one of the algebras is Koszul then the Hilbert series of $A \bullet B$ can be computed in terms of those of A and B and show that this is impossible if both algebras are not Koszul. An interesting application of these operations is given in section 5, where we show, following D. Piontkovskii [92], that Koszulness of a quadratic algebra A cannot be determined from the knowledge of the Hilbert series of A and $A^!$.

Chapter 4 is devoted to PBW-algebras. We start by giving a proof of the PBW-theorem for quadratic algebras that gives a criterion for the existence of a PBW-basis (as we have mentioned before, this is really a particular case of the diamond lemma). Then we prove that PBW-algebras are Koszul and give a criterion of the PBW-property in terms of distributivity of lattices in the spirit of Backelin’s criterion of Koszulness. We also check that the class of PBW-algebras is stable under quadratic duality and under all operations considered in chapter 3. Then we discuss Hilbert series of PBW-algebras. We show that the Hilbert series of a PBW-algebra is a generating function for the number of paths in a finite oriented graph and hence is rational. In section 7 we prove a generalization of the PBW-theorem involving filtrations with values in an ordered semigroup. In section 8 we consider commutative PBW-algebras. We prove that they are Koszul and compute their Hilbert series. We also present some examples showing that the sets of Hilbert series of PBW-algebras and Koszul algebras are different. In section 9 we discuss a generalization of the classes of Koszul and PBW-algebras from graded algebras to \mathbb{Z}-algebras. In section 11 we consider 3-dimensional elliptic Sklyanin algebras. We prove that they are Koszul but do not admit a PBW-basis even viewed as \mathbb{Z}-algebras.

In chapter 5 we consider nonhomogeneous quadratic algebras. For these algebras we prove in section 2 the PBW-theorem involving an analogue of the Jacobi identity and Koszulness of the corresponding homogeneous quadratic algebra. We also prove in section 3 a version of this theorem for nonhomogeneous quadratic modules. In section 4 we consider an analogue of quadratic duality for the nonhomogeneous case. It turns out that the dual object to a nonhomogeneous quadratic algebra is a so-called CDG-algebra (curved DG-algebra). In section 5 we give some examples of nonhomogeneous quadratic algebras and modules. In particular, we list all solutions of the analogue of the Jacobi identity in the case of the quadratic relations corresponding to a free commutative superalgebra, and consider an
example related to the PBW-theorem for quantum universal enveloping algebras (Example 6). The remainder of this chapter is devoted to various cohomological calculations related to nonhomogeneous quadratic duality.

Chapter 6 is devoted to the Koszul Deformation Principle for quadratic algebras and some of its consequences, such as finiteness of the number of Hilbert series of Koszul algebras with a fixed number of generators. Furthermore, in section 3 we give an explicit bound on this number and in section 7 we prove that the number of such Hilbert series is finite even if the ground field is allowed to vary. In section 4 we discuss some results on generic algebras among quadratic algebras with a given number of generators and relations. In section 5 we consider examples of possible Hilbert series for algebras with a small number of generators and relations. Section 6 contains counterexamples from [56] showing that the set of Koszul algebras is not constructible and that the set of Hilbert series of quadratic algebras with a given number of generators is infinite.

In chapter 7 we explain the connection between Koszul algebras and one-dependent processes. We start by formulating several conjectures on Hilbert series of Koszul algebras, such as the rationality conjecture. Then we derive a system of polynomial inequalities satisfied by the numbers $a_n = \dim A_n$ for a Koszul algebra A. The polynomials of a_n appearing in these inequalities express the dimensions of multigrading components of the c-bialgebra V_A. Then we show that these inequalities allow one to associate a one-dependent process to the sequence (a_n). We show that Koszul duality corresponds to the natural duality on one-dependent processes and also introduce analogues of some other operations on Koszul algebras for one-dependent processes. In section 5 we show that the one-dependent process associated with a PBW-algebra is a two-block-factor and that every two-block-factor can be approximated by those obtained from PBW-algebras. In section 7 we review the notion of a Hilbert space representation of a one-dependent process due to V. de Valk [121]. In section 8 we discuss the conjecture that the Hilbert series of a one-dependent process can be extended meromorphically to the entire complex plane. We show that this series always admits a meromorphic continuation to the disk $|z| < 2$ (it converges for $|z| < 1$) and prove the conjecture for two-block-factor processes. In section 9 we give a construction due to B. Tsirelson of a one-dependent process associated with an arbitrary quadratic algebra and a Hermitian form on the space of generators. In section 10 we consider an analogue for Koszul modules of the construction of a one-dependent process from a Koszul algebra.

In the Appendix we recall some definitions concerning DG-algebras, DG-modules and Massey products.

Acknowledgments. First, we would like to thank A. Vaintrob whose question about possible generalizations of the PBW-theorem to quadratic algebras started this work in 1991. Also, we are grateful to J. Backelin, A. Braverman, J. Bernstein, P. Etingof, V. Ginzburg, V. Ostrik, D. Piontkovskii, J.-E. Roos, A. Schwarz, B. Shelton, B. Tsirelson, and S. Yuzvinsky for many interesting discussions and suggestions. Special thanks are due to J. Backelin for pointing out several mistakes in the manuscript. Finally, we are grateful to the referee for many useful suggestions.
Bibliography

BIBLIOGRAPHY

This page intentionally left blank
Titles in This Series

37 Alexander Polishchuk and Leonid Positselski, Quadratic algebras, 2005
36 Matilde Marcolli, Arithmetic noncommutative geometry, 2005
35 Luca Capogna, Carlos E. Kenig, and Loredana Lanzani, Harmonic measure: Geometric and analytic points of view, 2005
34 E. B. Dynkin, Superdiffusions and positive solutions of nonlinear partial differential equations, 2004
33 Kristian Seip, Interpolation and sampling in spaces of analytic functions, 2004
32 Paul B. Larson, The stationary tower: Notes on a course by W. Hugh Woodin, 2004
31 John Roe, Lectures on coarse geometry, 2003
30 Anatole Katok, Combinatorial constructions in ergodic theory and dynamics, 2003
29 Thomas H. Wolff (Izabella Laba and Carol Shubin, editors), Lectures on harmonic analysis, 2003
28 Skip Garibaldi, Alexander Merkurjev, and Jean-Pierre Serre, Cohomological invariants in Galois cohomology, 2003
26 Susumu Ariki, Representations of quantum algebras and combinatorics of Young tableaux, 2002
25 William T. Ross and Harold S. Shapiro, Generalized analytic continuation, 2002
24 Victor M. Buchstaber and Taras E. Panov, Torus actions and their applications in topology and combinatorics, 2002
23 Luis Barreira and Yakov B. Pesin, Lyapunov exponents and smooth ergodic theory, 2002
22 Yves Meyer, Oscillating patterns in image processing and nonlinear evolution equations, 2001
21 Bojko Bakalov and Alexander Kirillov, Jr., Lectures on tensor categories and modular functors, 2001
20 Alison M. Etheridge, An introduction to superprocesses, 2000
19 R. A. Minlos, Introduction to mathematical statistical physics, 2000
18 Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, 1999
17 Marcel Berger, Riemannian geometry during the second half of the twentieth century, 2000
16 Harish-Chandra, Admissible invariant distributions on reductive p-adic groups (with notes by Stephen DeBacker and Paul J. Sally, Jr.), 1999
15 Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, 1999
14 Lars Kadison, New examples of Frobenius extensions, 1999
13 Yakov M. Eliashberg and William P. Thurston, Confoliations, 1998
12 I. G. Macdonald, Symmetric functions and orthogonal polynomials, 1998
11 Lars Gårding, Some points of analysis and their history, 1997
9 Stephen Gelbart, Lectures on the Arthur-Selberg trace formula, 1996
8 Bernd Sturmfels, Gröbner bases and convex polytopes, 1996
7 Andy R. Magid, Lectures on differential Galois theory, 1994
6 Dusa McDuff and Dietmar Salamon, J-holomorphic curves and quantum cohomology, 1994
5 V. I. Arnold, Topological invariants of plane curves and caustics, 1994
4 David M. Goldschmidt, Group characters, symmetric functions, and the Hecke algebra, 1993
TITLES IN THIS SERIES

3 A. N. Varchenko and P. I. Etingof, Why the boundary of a round drop becomes a curve of order four, 1992
2 Fritz John, Nonlinear wave equations, formation of singularities, 1990
1 Michael H. Freedman and Feng Luo, Selected applications of geometry to low-dimensional topology, 1989
Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra.

The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincaré-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

For additional information and updates on this book, visit

www.ams.org/bookpages/ulect-37

ISBN 0-8218-3834-2

AMS on the Web
www.ams.org