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Introduction

Modern model theory began with Morley’s [Mor65a] categoricity theorem: A
first order theory is categorical in one uncountable cardinal 𝜅 (has a unique model
of that cardinality) if and only if it is categorical in all uncountable cardinals.
This result triggered the change in emphasis from the study of logics to the study
of theories. Shelah’s taxonomy of first order theories by the stability classification
established the background for most model theoretic researches in the last 35 years.
This book lays out of some of the developments in extending this analysis to classes
that are defined in non-first order ways. Inspired by [Sac72, Kei71], we proceed
via short chapters that can be covered in a lecture or two.

There were three streams of model-theoretic research in the 1970’s. For simplic-
ity in the discussion below I focus on vocabularies (languages) which contain only
countably many relation and function symbols. In one direction workers in alge-
braic model theory melded sophisticated algebraic studies with techniques around
quantifier elimination and developed connections between model theory and alge-
bra. A second school developed fundamental model theoretic properties of a wide
range of logics. Many of these logics were obtained by expanding first order logic
by allowing longer conjunctions or longer strings of first order quantifiers; others
added quantifiers for ‘there exist infinitely many’, ‘there exist uncountably many’,
‘equicardinality’, and many other concepts. This work was summarized in the
Barwise-Feferman volume [BF85]. The use of powerful combinatorial tools such
as the Erdös-Rado theorem on the one hand and the discovery that Chang’s con-
jecture on two cardinal models for arbitrary first theories is independent of ZFC
and that various two cardinal theorems are connected to the existence of large car-
dinals [CK73] caused a sense that pure model theory was deeply entwined both
with heavy set-theoretic combinatorics and with (major) extensions of ZFC. In the
third direction, Shelah made the fear of independence illusory for the most central
questions by developing the stability hierarchy. He split all first order theories into
5 classes. Many interesting algebraic structures fall into the three classes (𝜔-stable,
superstable, strictly stable) whose models admit a deep structural analysis. This
classification is (set theoretically) absolute as are various fundamental properties
of such theories. Thus, for stable theories, Chang’s conjecture is proved in ZFC
[Lac72, She78]. Shelah focused his efforts on the test question: compute the func-
tion 𝐼(𝑇, 𝜅) which gives the number of models of cardinality 𝜅. He achieved the
striking main gap theorem. Every theory 𝑇 falls into one of two classes. 𝑇 may be
intractable, that is 𝐼(𝑇, 𝜅) = 2𝜅, the maximum, for every sufficiently large 𝜅. Or,
every model of 𝑇 is decomposed as a tree of countable models and the number of
models in 𝜅 is bounded well below 2𝜅. The description of this tree and the proof of
the theorem required the development of a far reaching generalization of the Van
der Waerden axiomatization of independence in vector spaces and fields. This is

vii



viii INTRODUCTION

not the place for even a cursory survey of the development of stability theory over
the last 35 years. However, the powerful tools of the Shelah’s calculus of indepen-
dence and orthogonality are fundamental to the applications of model theory in the
1990’s to Diophantine geometry and number theory [Bou99].

Since the 1970’s Shelah has been developing the intersection of the second
and third streams described above: the model theory of the class of models of
a sentence in one of a number of ‘non-elementary’ logics. He builds on Keisler’s
work [Kei71] for the study of 𝐿𝜔1,𝜔 but to extend to other logics he needs a more
general framework and the Abstract Elementary Classes (AEC) we discuss below
provide one. In the last ten years, the need for such a study has become more
widely appreciated as a result of work on both such concrete problems as complex
exponentiation and Banach spaces and programmatic needs to understand ‘type-
definable’ groups and to understand an analogue to ‘stationary types’ in simple
theories.

Our goal here is to provide a systematic and intelligible account of some central
aspects of Shelah’s work and related developments. We study some very specific
logics (e.g. 𝐿𝜔1,𝜔) and the very general case of abstract elementary classes. The sur-
vey articles by Grossberg [Gro02] and myself [Bal04] provide further background
and motivation for the study of AEC that is less technical than the development
here.

An abstract elementary class (AEC) 𝑲 is a collection of models and a notion
of ‘strong submodel’ ≺ which satisfies general conditions similar to those satisfied
by the class of models of a first order theory with ≺ as elementary submodel.
In particular, the class is closed under unions of ≺-chains. A Löwenheim-Skolem
number is assigned to each AEC: a cardinal 𝜅 such that each 𝑀 ∈ 𝑲 has a strong
submodel of cardinality 𝜅. Examples include the class of models of a ∀∃ first order
theory with ≺ as substructure, a complete sentence of 𝐿𝜔1,𝜔 with ≺ as elementary
submodel in an appropriate fragment of 𝐿𝜔1,𝜔 and the class of submodels of a
homogeneous model with ≺ as elementary submodel. The models of a sentence of
𝐿𝜔1,𝜔(𝑄) (𝑄 is the quantifier ‘there exists uncountably many’) fit into this context
modulo two important restrictions. An artificial notion of ‘strong submodel’ must
be introduced to guarantee the satisfaction of the axioms concerning unions of
chains. More important from a methodological viewpoint, without still further and
unsatisfactory contortions, the Löwenheim number of the class will be ℵ1.

In general the analysis is not nearly as advanced as in the first order case. We
have only approximations to Morley’s theorem and only a rudimentary development
of stability theory. (There have been significant advances under more specialized
assumptions such as homogeneity or excellence [GH89, HLS05] and other works
of e.g. Grossberg, Hyttinen, Lessmann, and Shelah.) The most dispositive result
is Shelah’s proof that assuming 2ℵ𝑛 < 2ℵ𝑛+1 for 𝑛 < 𝜔, if a sentence of 𝐿𝜔1,𝜔 is
categorical up to ℵ𝜔 then is categorical in all cardinals. Categoricity up to ℵ𝜔 is
essential [HS90, BK].

The situation for AEC is even less clear. One would like at least to show that
an AEC could not alternate indefinitely between categoricity and non-categoricity.
The strongest result we show here is implicit in [She99]. Theorem 15.13 asserts:
There is a Hanf number 𝜇 (not computed but depending only on the Löwenheim
number of 𝑲) such that if an AEC 𝑲 satisfying the general conditions of Part 3
is categorial in a successor cardinal larger than 𝜇, it is categorical in all larger
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cardinals. This state of affairs in a major reason that this monograph is titled
categoricity. Although a general stability theory for abstract elementary classes is
the ultimate goal, the results here depend heavily on assuming categoricity in at
least one cardinal.

There are several crucial aspects of first order model theory. By Lindström’s
theorem [Lin69] we know they can be summarized as: first order logic is the only
logic (of Lindström type) with Löwenheim number ℵ0 that satisfies the compactness
theorem. One corollary of compactness in the first order case plays a distinctive
role here, the amalgamation property: two elementary extensions of a fixed model
𝑀 have a common extension over 𝑀 . In particular, the first order amalgamation
property allows the identification (in a suitable monster model) of a syntactic type
(the description of a point by the formulas it satisfies) with an orbit under the
automorphism group (we say Galois type).

Some of the results here and many associated results were originally developed
using considerable extensions to ZFC. However, later developments and the focus
on AEC rather than 𝐿𝜅,𝜔 (for specific large cardinals 𝜅 ) have reduced such reliance.
With one exception, the results in this book are proved in ZFC or in ZFC + 2ℵ𝑛 <
2ℵ𝑛+1 for finite 𝑛; we call this proposition the very weak generalized continuum
hypothesis VWGCH . The exception is Chapter 17 which relies on the hypothesis

that 2𝜇 < 2𝜇
+

for any cardinal 𝜇; we call this hypothesis the weak generalized
continuum hypothesis, WGCH. Without this assumption, some crucial results have
not been proved in ZFC; the remarkable fact is that such a benign assumption as
VWGCH is all that is required. Some of the uses of stronger set theory to analyze
categoricity of 𝐿𝜔1,𝜔-sentences can be avoided by the assumption that the class of
models considered contains arbitrarily large models.

We now survey the material with an attempt to convey the spirit and not the
letter of various important concepts; precise versions are in the text. With a few
exceptions that are mentioned at the time all the work expounded here was first
discovered by Shelah in a long series of papers.

Part I (Chapters 2-4) contains a discussion of Zilber’s quasiminimal excellent
classes [Zil05]. This is a natural generalization of the study of first order strongly
minimal theories to the logic 𝐿𝜔1,𝜔 (and some fragments of 𝐿𝜔1,𝜔(𝑄). It clearly
exposes the connections between categoricity and homogeneous combinatorial ge-
ometries; there are natural algebraic applications to the study of various expansions
of the complex numbers. We expound a very concrete notion of ‘excellence’ for a
combinatorial geometry. Excellence describes the closure of an independent 𝑛-cube
of models. This is a fundamental structural property of countable structures in a
class 𝑲 which implies that 𝑲 has arbitrarily large models (and more). Zilber’s
contribution is to understand the connections of these ideas to concrete mathe-
matics, to recognize the relevance of infinitary logic to these concrete problems,
and to prove that his particular examples are excellent. These applications require
both great insight in finding the appropriate formal context and substantial math-
ematical work in verifying the conditions laid down. Moreover, his work has led
to fascinating speculations in complex analysis and number theory. As pure model
theory of 𝐿𝜔1,𝜔, these results and concepts were all established in greater generality
by Shelah [She83a] more than twenty years earlier. But Zilber’s work extends She-
lah’s analysis in one direction by applying to some extensions of 𝐿𝜔1,𝜔. We explore
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the connections between these two approaches at the end of Chapter 25. Before
turning to that work, we discuss an extremely general framework.

The basic properties of abstract elementary classes are developed in Part II
(chapters 5-8). In particular, we give Shelah’s presentation theorem which repre-
sents every AEC as a pseudoelementary class (class of reducts to a vocabulary 𝐿
of a first order theory in an expanded language 𝐿′) that omit a set of types. Many
of the key results (especially in Part IV) depend on having Löwenheim number
ℵ0. Various successes and perils of translating 𝐿𝜔1,𝜔(𝑄) to an AEC (with count-
able Löwenheim number) are detailed in Chapters 6-8 along with the translation
of classes defined by sentences of 𝐿𝜔1,𝜔 to the class of atomic models of a first or-
der theory in an expanded vocabulary. Chapter 8 contains Shelah’s beautiful ZFC
proof that a sentence of 𝐿𝜔1,𝜔(𝑄) that is ℵ1-categorical has a model of power ℵ2.

In Part III (Chapters 9-17) we first study the conjecture that for ‘reasonably
well-behaved classes’, categoricity should be either eventually true or eventually
false. We formalize ‘reasonably well-behaved’ via two crucial hypotheses: amalga-
mation and the existence of arbitrarily large models. Under these assumptions, the
notion of Galois type over a model is well-behaved and we recover such fundamental
notions as the identification of ‘saturated models’ with those which are ‘model ho-
mogeneous’. Equally important, we are able to use the omitting types technology
originally developed by Morley to find Ehrenfeucht-Mostowski models for AEC.
This leads to the proof that categoricity implies stability in smaller cardinalities
and eventually, via a more subtle use of Ehrenfeucht-Mostowski models, to a notion
of superstability. The first goal of these chapters is to expound Shelah’s proof of a
downward categoricity theorem for an AEC (satisfying the above hypothesis) and
categorical in a successor cardinal. A key aspect of that argument is the proof
that if 𝑲 is categorical above the Hanf number for AEC’s, then two distinct Galois
types differ on a ‘small’ submodel. Grossberg and VanDieren [GV06c] christened
this notion: tame.

We refine the notion of tame in Chapter 11 and discuss three properties of
Galois types: tameness, locality, and compactness. Careful discussion of these
notions requires the introduction of cardinal parameters to calibrate the notion
of ‘small’. We analyze this situation and sketch examples related to the White-
head conjecture showing how non-tame classes can arise. Grossberg and VanDieren
[GV06b, GV06a]develop the theory for AEC satisfying very strong tameness hy-
potheses. Under these conditions they showed categoricity could be transferred
upward from categoricity in two successive cardinals. Key to obtaining categoric-
ity transfer from one cardinal 𝜆+ is the proof that the union of a ‘short’ chain
of saturated models of cardinality 𝜆 is saturated. This is a kind of superstability
consideration; it requires a further and still more subtle use of the Ehrenfeucht-
Mostowski technology and a more detailed analysis of splitting; this is carried out
in Chapter 15.

In Chapters 16 and 17 we conclude Part III and explore AEC without as-
suming the amalgamation property. We show, under mild set-theoretic hypotheses
(weak diamond), that an AEC which is categorical in 𝜅 and fails the amalgamation
property for models of cardinality 𝜅 has many models of cardinality 𝜅+.

In Part IV (Chapters 18-26) we return to the more concrete situation of atomic
classes, which, of course, encompasses 𝐿𝜔1,𝜔. Using 2ℵ0 < 2ℵ1 , one deduces from a
theorem of Keisler [Kei71] that an ℵ1-categorical sentence 𝜓 in 𝐿𝜔1,𝜔 is 𝜔-stable.
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Note however that 𝜔-stability is proved straightforwardly (Chapter 7) if one assumes
𝜓 has arbitrarily large models. In Chapters 18-23, we introduce an independence
notion and develop excellence for atomic classes. Assuming cardinal exponentia-
tion is increasing below ℵ𝜔, we prove a sentence of 𝐿𝜔1,𝜔 that is categorical up to
ℵ𝜔 is excellent. In Chapters 24-25 we report Lessmann’s [Les03] account of prov-
ing Baldwin-Lachlan style characterizations of categoricity for 𝐿𝜔1,𝜔 and Shelah’s
analog of Morley’s theorem for excellent atomic classes. We conclude Chapter 25,
by showing how to deduce the categoricity transfer theorem for arbitrary 𝐿𝜔1,𝜔-
sentences from a (stronger) result for complete sentences. Finally, in the last chap-
ter we explicate the Hart-Shelah example of an 𝐿𝜔1,𝜔-sentence that is categorical
up to ℵ𝑛 but not beyond and use it to illustrate the notion of tameness.

The work here has used essentially in many cases that we deal with classes with
Löwenheim number ℵ0. Thus, in particular, we have proved few substantive general
results concerning 𝐿𝜔1,𝜔(𝑄) (the existence of a model in ℵ2 is a notable exception).
Shelah has substantial not yet published work attacking the categoricity transfer
problem in the context of ‘frames’; this work does apply to 𝐿𝜔1,𝜔(𝑄) and does
not depend on Löwenheim number ℵ0. We do not address this work [She0x,
She00d, She00c] nor related work which makes essential use of large cardinals
([MS90, KS96].

A solid graduate course in model theory is an essential prerequisite for this
book. Nevertheless, the only quoted material is very elementary model theory (say
a small part of Marker’s book [Mar02]), and two or three theorems from the Keisler
book [Kei71] including the Lopez-Escobar theorem characterizing well-orderings.
We include in Appendix A a full account of the Hanf number for omitting types.
In Appendix B we give the Keisler technology for omitting types in uncountable
models. The actual combinatorial principle that extends ZFC and is required for
the results here is the Devlin-Shelah weak diamond. A proof of the weak diamond
from weak GCH below ℵ𝜔 appears in Appendix C. In Appendix D we discuss a
number of open problems. Other natural background reference books are [Mar02,
Hod87, She78, CK73].

The foundation of all this work is Morley’s theorem [Mor65a]; the basis for
transferring this result to infinitary logic is [Kei71]. Most of the theory is due
to Shelah. In addition to the fundamental papers of Shelah, this exposition de-
pends heavily on various works by Grossberg, Lessmann, Makowski, VanDieren,
and Zilber and on conversations with Adler, Coppola, Dolich, Drueck, Goodrick,
Hart, Hyttinen, Kesala, Kirby, Kolesnikov, Kueker, Laskowski, Marker, Medvedev,
Shelah, and Shkop as well as these authors. The book would never have happened
if not for the enthusiasm and support of Rami Grossberg, Monica VanDieren and
Andres Villaveces. They brought the subject alive for me and four conferences in
Bogota and the 2006 AIM meeting on Abstract Elementary Classes were essential
to my understanding of the area. Grossberg, in particular, was a unending aid
in finding my way. I thank the logic seminar at the University of Barcelona and
especially Enriques Casanovas for the opportunity to present Part IV in the Fall of
2006 and for their comments. I also must thank the University of Illinois at Chicago
and the National Science Foundation for partial support during the preparation of
this manuscript.
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results (for classes with amalgamation) and categoricity in excellent classes. Such crucial 
tools as Ehrenfeucht–Mostowski models, Galois types, tameness, omitting-types theorems, 
multi-dimensional amalgamation, atomic types, good sets, weak diamonds, and excellent 
classes are developed completely and methodically. The (occasional) reliance on extensions 
of basic set theory is clearly laid out. The book concludes with a set of open problems.

For additional information 
and updates on this book, visit

www.ams.org/bookpages/ulect-50
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