University
 Lecture Series

Volume 51

Zeros of Gaussian

 Analytic Functions and Determinantal Point Processes
J. Ben Hough

Manjunath Krishnapur Yuval Peres

Bálint Virág

Zeros of Gaussian Analytic Functions and Determinantal Point Processes

University
 Lecture Series

Volume 51

Zeros of Gaussian Analytic Functions and Determinantal Point Processes

J. Ben Hough
Manjunath Krishnapur
Yuval Peres
Bálint Virág

EDITORIAL COMMITTEE

Jerry L. Bona
Eric M. Friedlander (Chair)

Nigel D. Higson

J. T. Stafford

2000 Mathematics Subject Classification. Primary 60G55, 30B20, 30C15, 60G15, 15A52, 60F10, 60D05, 30F05, 60H25.
[FRONT COVER] The picture in the upper left depicts the zero set of a Gaussian entire function which is invariant in distribution under isometries of the plane. This invariance is explained in Chapter 2. The upper right picture depicts an allocation of the plane to the zero set of the same function. Each zero is allotted a connected region of constant area, and the allocation has a natural gravitational interpretation in terms of the potential illustrated in the lower right picture. See Chapter 8 for details. The lower left picture illustrates the harmonic extension to the unit disk of white noise on the unit circle. This process has the same distribution as the real part of a certain Gaussian analytic function on the unit disk; see section 5.4.3.

For additional information and updates on this book, visit
www.ams.org/bookpages/ulect-51

Library of Congress Cataloging-in-Publication Data

Zeros of Gaussian analytic functions and determinantal point processes / J. Ben Hough ... [et al.].
p. cm. - (University lecture series ; v. 51)

Includes bibliographical references.
ISBN 978-0-8218-4373-4 (alk. paper)

1. Gaussian processes. 2. Analytic functions. 3. Polynomials. 4. Point processes. I. Hough, J. Ben, (John Ben), 1979-

QA274.4.Z47 2009
$519.2^{\prime} 3-\mathrm{dc} 22$
2009027984

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2009 by the authors. All rights reserved.

Printed in the United States of America.
© The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Contents

Preface vii
Chapter 1. Introduction 1
1.1. Random polynomials and their zeros 1
1.2. Basic notions and definitions 6
1.3. Hints and solutions 11
Chapter 2. Gaussian Analytic Functions 13
2.1. Complex Gaussian distribution 13
2.2. Gaussian analytic functions 15
2.3. Isometry-invariant zero sets 18
2.4. Distribution of zeros - The first intensity 23
2.5. Intensity of zeros determines the GAF 29
2.6. Notes 31
2.7. Hints and solutions 32
Chapter 3. Joint Intensities 35
3.1. Introduction - Random polynomials 35
3.2. Exponential tail of the number of zeros 37
3.3. Joint intensities for random analytic functions 39
3.4. Joint intensities - The Gaussian case 40
3.5 . Fluctuation behaviour of the zeros 42
Chapter 4. Determinantal Point Processes 47
4.1. Motivation 47
4.2. Definitions 48
4.3. Examples of determinantal processes 53
4.4. How to generate determinantal processes 63
4.5. Existence and basic properties 65
4.6. Central limit theorems 72
4.7. Radially symmetric processes on the complex plane 72
4.8. High powers of complex polynomial processes 74
4.9. Permanental processes 75
4.10. Notes 79
4.11. Hints and solutions 80
Chapter 5. The Hyperbolic GAF 83
5.1. A determinantal formula 83
5.2. Law of large numbers 90
5.3. Reconstruction from the zero set 91
5.4. Notes 95
5.5. Hints and solutions 98
Chapter 6. A Determinantal Zoo 99
6.1. Uniform spanning trees 99
6.2. Circular unitary ensemble 100
6.3. Non-normal matrices, Schur decomposition and a change of measure 103
6.4. Ginibre ensemble 105
6.5. Spherical ensemble 106
6.6. Truncated unitary matrices 107
6.7. Singular points of matrix-valued GAFs 112
6.8. Notes 116
Chapter 7. Large Deviations for Zeros 119
7.1. An Offord type estimate 119
7.2. Hole probabilities 121
7.3. Notes 132
Chapter 8. Advanced Topics: Dynamics and Allocation to Random Zeros 135
8.1. Dynamics 135
8.2. Allocation 137
8.3. Notes 144
8.4. Hints and solutions 146
Bibliography 149

Preface

Random configurations of points in space, also known as point processes, have been studied in mathematics, statistics and physics for many decades. In mathematics and statistics, the emphasis has been on the Poisson process, which can be thought of as a limit of picking points independently and uniformly in a large region. Taking a different perspective, a finite collection of points in the plane can always be considered as the roots of a polynomial; in this coordinate system, taking the coefficients of the polynomial to be independent is natural. Limits of these random polynomials and their zeros are a core subject of this book; the other class consists of processes with joint intensities of determinantal form. The intersection of the two classes receives special attention, in Chapter 5 for instance. Zeros of random polynomials and determinantal processes have been studied primarily in mathematical physics. In this book we adopt a probabilistic perspective, exploiting independence whenever possible.

The book is designed for graduate students in probability, analysis, and mathematical physics, and exercises are included. No familiarity with physics is assumed, but we do assume that the reader is comfortable with complex analysis as in Ahlfors' text (1) and with graduate probability as in Durrett (20) or Billingsley (6). Possible ways to read the book are indicated graphically below, followed by an overview of the various chapters.

The book is organized as follows:
Chapter 1 starts off with a quick look at how zeros of a random polynomial differ from independently picked points, and the ubiquitous Vandermonde factor makes its first appearance in the book. Following that, we give definitions of basic notions such as point processes and their joint intensities.
Chapter 2 provides an introduction to the theory of Gaussian analytic functions (GAFs) and gives a formula for the first intensity of zeros. We introduce three important classes of geometric GAFs: planar, hyperbolic and spherical GAFs, whose zero sets are invariant in distribution under isometries preserving the underlying geometric space. Further we show that the intensity of zeros of a GAF determines the distribution of the GAF (Calabi's rigidity).
Chapter 3 We prove a formula due to Hammersley for computing the joint intensities of zeros for an arbitrary GAF.
Chapter 4 introduces determinantal processes which are used to model fermions in quantum mechanics and also arise naturally in many other settings. We show that general determinantal processes may be realized as mixtures of "determinantal projection processes", and use this result to give simple proofs of existence and central limit theorems. We also present similar results for permanental processes, which are used to model bosons in quantum mechanics.

Chapter 5 gives a deeper analysis of the hyperbolic GAF. Despite the many similarities between determinantal processes and zeros of GAFs, this function provides the only known link between the two fields. For a certain value of the parameter, the zero set of the hyperbolic GAF is indeed a determinantal process and this discovery allows one to say a great deal about its distribution. In particular, we give a simple description of the distribution of the moduli of zeros and obtain sharp asymptotics for the "hole probability" that a disk of radius r contains no zeros. We also obtain a law of large numbers and reconstruction result for the hyperbolic GAFs, the proofs of these do not rely on the determinantal property.
Chapter 6 studies a number of examples of determinantal point processes that arise naturally in combinatorics and probability. This includes the classical Ginibre and circular unitary ensembles from random matrix theory, as well as examples arising from non-intersecting random walks and random spanning trees. We give proofs that these point processes are determinantal.
Chapter 7 turns to the topic of large deviations. First we prove a very general result due to Offord which may be applied to an arbitrary GAF. Next we present more specialized techniques developed by Sodin and Tsirelson which can be used to determine very precisely, the asymptotic decay of the hole probability for the zero set of the planar GAF. The computation is more difficult in this setting, since this zero set is not a determinantal process.
Chapter 8 touches on two advanced topics, dynamical Gaussian analytic functions and allocation of area to zeros.

In the section on dynamics, we present a method by which the zero set of the hyperbolic GAF can be made into a time-homogeneous Markov process. This construction provides valuable insight into the nature of the repulsion between zeros, and we give an SDE description for the evolution of a single zero. This description can be generalized to simultaneously describe the evolution of all the zeros.

In the section on allocation, we introduce the reader to a beautiful scheme discovered by Sodin and Tsirelson for allocating Lebesgue measure to the zero set of the planar GAF. The allocation is obtained by constructing a random potential as a function of the planar GAF and then allowing points in the plane to flow along the gradient curves of the potential in the direction of decay. This procedure partitions the plane into basins of constant area, and we reproduce an argument due to Nazarov, Sodin and Volberg that the diameter of a typical basin has super-exponentially decaying tails.

The inter-dependence of the chapters is shown in Figure 1 schematically.

Acknowledgements

We are particularly grateful to Fedor Nazarov, Misha Sodin, Boris Tsirelson and Alexander Volberg for allowing us to reproduce their work here. Ron Peled, Misha Sodin, Tonci Antunovic and Subhroshekhar Ghosh gave us numerous comments and corrections to an earlier draft of the book. Many thanks also to Alexander Holroyd for creating the nice stable allocation pictures appearing in chapter 8. The second author would like to thank Microsoft research, SAMSI, and University of Toronto and U.C. Berkeley where significant portions of the book were written. In addition,

Figure 1. Dependence among chapters.
we thank the following people for their comments, discussions and suggestions: Persi Diaconis, Yogeshwaran Dhandapani, Jian Ding, Ning Weiyang, Steve Evans, Russell Lyons, Alice Guionnet, Ofer Zeitouni, Tomoyuki Shirai, Balázs Szegedy.

Bibliography

1. Lars V. Ahlfors, Complex analysis, third ed., McGraw-Hill Book Co., New York, 1978, An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics. MR 80c:30001
2. George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR MR1688958 (2000g:33001)
3. R. B. Bapat, Mixed discriminants and spanning trees, Sankhyā Ser. A 54 (1992), no. Special Issue, 49-55, Combinatorial mathematics and applications (Calcutta, 1988). MR MR1234678 (94d:05038)
4. Steven R. Bell, The Cauchy transform, potential theory, and conformal mapping, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 94k:30013
5. Itai Benjamini, Russell Lyons, Yuval Peres, and Oded Schramm, Uniform spanning forests, Ann. Probab. 29 (2001), no. 1, 1-65. MR MR1825141 (2003a:60015)
6. Patrick Billingsley, Probability and measure, third ed., Wiley Series in Probability and Mathematical Statistics, John Wiley \& Sons Inc., New York, 1995, A Wiley-Interscience Publication. MR MR1324786 (95k:60001)
7. E. Bogomolny, O. Bohigas, and P. Lebœuf, Distribution of roots of random polynomials, Phys. Rev. Lett. 68 (1992), no. 18, 2726-2729. MR 92m:81054
8. E. Bogomolny, O. Bohigas, and P. Leboeuf, Quantum chaotic dynamics and random polynomials, J. Statist. Phys. 85 (1996), no. 5-6, 639-679. MR MR1418808 (98a:81046)
9. Carl Wilhelm Borchardt, Bestimmung der symmetrischen verbindungen ihrer erzeugenden funktion, J. Reine Angew. Math. 53 (1855), 193-198.
10. R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte, Determinants and current flows in electric networks, Discrete Math. 100 (1992), no. 1-3, 291-301, Special volume to mark the centennial of Julius Petersen's "Die Theorie der regulären Graphs", Part I. MR MR1172356 (93c:94011)
11. Robert Burton and Robin Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Probab. 21 (1993), no. 3, 1329-1371. MR MR1235419 (94m:60019)
12. J. M. Caillol, Exact results for a two-dimensional one-component plasma on a sphere, J. Physique 42 (1981), no. 12, L-245-L-247.
13. James W. Cannon, William J. Floyd, Richard Kenyon, and Walter R. Parry, Hyperbolic geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 59-115. MR MR1491098 (99c:57036)
14. L. Carlitz and Jack Levine, An identity of Cayley, Amer. Math. Monthly 67 (1960), 571-573. MR MR0116028 (22 \#6823)
15. Sourav Chatterjee, Ron Peled, Yuval Peres, and Dan Romik, Gravitational allocation to poisson points, To appear in Ann. Math. Preprint available at arXiv:math/0611886.
16. O. Costin and J. Lebowitz, Gaussian fluctuations in random matrices, Phys. Rev. Lett. 75 (1995), no. 1, 69-72.
17. D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes. Vol. I, second ed., Probability and its Applications (New York), SpringerVerlag, New York, 2003, Elementary theory and methods. MR MR1950431 (2004c:60001)
18. Persi Diaconis, Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 2, 155-178 (electronic). MR MR1962294 (2004d:15017)
19. Persi Diaconis and Steven N. Evans, Linear functionals of eigenvalues of random matrices, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2615-2633. MR 2002d:60003
20. Richard Durrett, Probability: theory and examples, second ed., Duxbury Press, Belmont, CA, 1996. MR MR1609153 (98m:60001)
21. Freeman J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Mathematical Phys. 3 (1962), 140-156. MR MR0143556 (26 \#1111)
22. \qquad , The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics, J. Mathematical Phys. 3 (1962), 1199-1215. MR MR0177643 (31 \#1905)
23. Alan Edelman and Eric Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 1-37. MR 95m:60082
24. P. J. Forrester and G. Honner, Exact statistical properties of the zeros of complex random polynomials, J. Phys. A 32 (1999), no. 16, 2961-2981. MR MR1690355 (2000h:82047)
25. P. J. Forrester, B. Jancovici, and J. Madore, The two-dimensional Coulomb gas on a sphere: exact results, J. Statist. Phys. 69 (1992), no. 1-2, 179-192. MR MR1184774 (93h:82018)
26. Peter Forrester, Log-gases and random matrices, Book to appear. Chapters available at http://www.ms.unimelb.edu.au/ matpjf/matpjf.html.
27. Bernd Fritzsche, Victor Katsnelson, and Bernd Kirstein, The schur algorithm in terms of system realization, Preprint available at arXiv:0805.4732.
28. D. Gale and L. S. Shapley, College Admissions and the Stability of Marriage, Amer. Math. Monthly 69 (1962), no. 1, 9-15. MR MR1531503
29. S. Gasiorowicz, Quantum physics, second ed., John Wiley \& Sons, Inc., New York, 1996.
30. Ira Gessel and Gérard Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math. 58 (1985), no. 3, 300-321. MR MR815360 (87e:05008)
31. Jean Ginibre, Statistical ensembles of complex, quaternion, and real matrices, J. Mathematical Phys. 6 (1965), 440-449. MR MR0173726 (30 \#3936)
32. J. H. Hannay, Chaotic analytic zero points: exact statistics for those of a random spin state, J. Phys. A 29 (1996), no. 5, L101-L105. MR 97a:82007
33. Christopher Hoffman, Alexander E. Holroyd, and Yuval Peres, A stable marriage of Poisson and Lebesgue, Ann. Probab. 34 (2006), no. 4, 1241-1272. MR MR2257646
34. J. Ben Hough, Large deviations for the zero set of an analytic function with diffusing coefficients, Preprint available at arXiv:math.PR/0510237.
35. J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág, Determinantal processes and independence, Probab. Surv. 3 (2006), 206-229 (electronic). MR MR2216966 (2006m:60068)
36. Birger Iversen, Hyperbolic geometry, London Mathematical Society Student Texts, vol. 25, Cambridge University Press, Cambridge, 1992. MR MR1205776 (94b:51023)
37. S. Iyanaga and Y. (Eds.) Kawada, Encyclopedic dictionary of mathematics, 1980.
38. B. Jancovici, J. L. Lebowitz, and G. Manificat, Large charge fluctuations in classical Coulomb systems, J. Statist. Phys. 72 (1993), no. 3-4, 773-787. MR MR1239571 (94h:82015)
39. B. Jancovici and G. Téllez, Two-dimensional Coulomb systems on a surface of constant negative curvature, J. Statist. Phys. 91 (1998), no. 5-6, 953-977. MR MR1637270 (99e:82008)
40. Svante Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, Cambridge, 1997. MR MR1474726 (99f:60082)
41. Kurt Johansson, Non-intersecting paths, random tilings and random matrices, Probab. Theory Related Fields 123 (2002), no. 2, 225-280. MR MR1900323 (2003h:15035)
42. , Discrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 (2003), no. 1-2, 277-329. MR MR2018275 (2004m:82096)
43. Mark Kac, Probability and related topics in physical sciences, With special lectures by G. E. Uhlenbeck, A. R. Hibbs, and B. van der Pol. Lectures in Applied Mathematics. Proceedings of the Summer Seminar, Boulder, Colo., vol. 1957, Interscience Publishers, London-New York, 1959. MR MR0102849 (21 \#1635)
44. Jean-Pierre Kahane, Some random series of functions, second ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 87m:60119
45. Samuel Karlin and James McGregor, Coincidence probabilities, Pacific J. Math. 9 (1959), 1141-1164. MR MR0114248 (22 \#5072)
46. Victor Katsnelson, Bernd Kirstein, and Manjunath Krishnapur, Truncated unitary matrices, schur algorithm and random matrix analytic functions, Preprint.
47. Richard Kenyon, Local statistics of lattice dimers, Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), no. 5, 591-618. MR MR1473567 (99b:82039)
48. \qquad , Height fluctuations in the honeycomb dimer model, Comm. Math. Phys. 281 (2008), no. 3, 675-709. MR MR2415464
49. Gustav Kirchhoff, Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme gefürt wird, Ann. Phys. und Chem. 72 (1847), no. 12, 497-508.
50. E. Kostlan, On the distribution of roots of random polynomials, From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990) (New York), Springer, 1993, pp. 419-431. MR 1246137
51. Eric Kostlan, On the spectra of Gaussian matrices, Linear Algebra Appl. 162/164 (1992), 385-388, Directions in matrix theory (Auburn, AL, 1990). MR MR1148410 (93c:62090)
52. Manjunath Krishnapur, Zeros of random analytic functions, Ph.D. thesis, U.C. Berkeley (2006). Preprint available at arXiv:math/0607504v1 [math.PR].
53. \qquad , Overcrowding estimates for zeroes of planar and hyperbolic Gaussian analytic functions, J. Stat. Phys. 124 (2006), no. 6, 1399-1423. MR MR2266449
54. _ From random matrices to random analytic functions, Ann. Probab. 37 (2009), no. 1, 314-346. MR MR2489167
55. A. Lenard, Correlation functions and the uniqueness of the state in classical statistical mechanics, Comm. Math. Phys. 30 (1973), 35-44. MR MR0323270 (48 \#1628)
56. \qquad , States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures, Arch. Rational Mech. Anal. 59 (1975), no. 3, 241-256. MR MR0391831 (52 \#12650)
57. Odile Macchi, The coincidence approach to stochastic point processes, Advances in Appl. Probability 7 (1975), 83-122. MR MR0380979 (52 \#1876)
58. Madan Lal Mehta, Random matrices, third ed., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. MR MR2129906 (2006b:82001)
59. Henryk Minc, Permanents, Addison-Wesley Publishing Co., Reading, Mass., 1978, With a foreword by Marvin Marcus, Encyclopedia of Mathematics and its Applications, Vol. 6. MR 80d:15009
60. F. Nazarov, M. Sodin, and A. Volberg, The Jancovici-Lebowitz-Manificat law for large fluctuations of random complex zeroes, Comm. Math. Phys. 284 (2008), no. 3, 833-865. MR MR2452596
61. Fedor Nazarov, Mikhail Sodin, and Alexander Volberg, Transportation to random zeroes by the gradient flow, Geom. Funct. Anal. 17 (2007), no. 3, 887-935. MR MR2346279
62. Zeev Nehari, Conformal mapping, Dover Publications Inc., New York, 1975, Reprinting of the 1952 edition. MR 51 \#13206
63. Donald J. Newman, Analytic number theory, Graduate Texts in Mathematics, 177., Springer-Verlag, New York, 1998. MR 98m:11001
64. Alexandru Nica and Roland Speicher, Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, vol. 335, Cambridge University Press, Cambridge, 2006. MR MR2266879
65. Alon Nishry, Asymptotics of the hole probability for zeros of random entire functions, Preprint availble as arXiv:0903.4970.
66. A. C. Offord, The distribution of zeros of power series whose coefficients are independent random variables, Indian J. Math. 9 (1967), 175-196. MR MR0231432 (37 \#6987)
67. Igor Pak, Partition bijections, a survey, Ramanujan J. 12 (2006), no. 1, 5-75. MR MR2267263 (2007h:05018)
68. Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987, Reprint of the 1934 original. MR MR1451142 (98a:01023)
69. K. R. Parthasarathy, Probability measures on metric spaces, AMS Chelsea Publishing, Providence, RI, 2005, Reprint of the 1967 original. MR MR2169627 (2006d:60004)
70. Yuval Peres and Bálint Virág, Zeros of the i.i.d. gaussian power series: a conformally invariant determinantal process, Acta Mathematica 194 (2005), 1-35.
71. David Pollard, A user's guide to measure theoretic probability, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2002. MR 2002k:60003
72. E. M. Rains, High powers of random elements of compact Lie groups, Probab. Theory Related Fields 107 (1997), no. 2, 219-241. MR MR1431220 (98b:15026)
73. Walter Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987. MR MR924157 (88k:00002)
74. \qquad , Functional analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991. MR MR1157815 (92k:46001)
75. A. Scardicchio, Chase E. Zachary, and Salvatore Torquato, Statistical properties of determinantal point processes in high-dimensional euclidean spaces, Phys. Rev. E (041108 (2009)), no. 79.
76. Bernard Shiffman and Steve Zelditch, Equilibrium distribution of zeros of random polynomials, Int. Math. Res. Not. 2003 (2003), no. 1, 25-49. MR MR1935565 (2003h:60075)
77. Tomoyuki Shirai and Yoichiro Takahashi, Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes, J. Funct. Anal. 205 (2003), no. 2, 414-463. MR MR2018415 (2004m:60104)
78. Michael Shub and Steve Smale, Complexity of Bézout's theorem. I. Geometric aspects, J. Amer. Math. Soc. 6 (1993), no. 2, 459-501. MR MR1175980 (93k:65045)
79. Barry Simon, Functional integration and quantum physics, Pure and Applied Mathematics, vol. 86, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1979. MR 84m:81066
80. M. Sodin, Zeros of Gaussian analytic functions, Math. Res. Lett. 7 (2000), no. 4, 371-381. MR 2002d:32030
81. Mikhail Sodin, Zeroes of Gaussian analytic functions, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, pp. 445-458. MR MR2185759 (2007h:30009)
82. Mikhail Sodin and Boris Tsirelson, Random complex zeros. I. Asymptotic normality, Israel J. Math. 144 (2004), 125-149. MR MR2121537 (2005k:60079)
83. , Random complex zeroes. III. Decay of the hole probability, Israel J. Math. 147 (2005), 371-379. MR MR2166369
84. , Random complex zeroes. II. Perturbed lattice, Israel J. Math. 152 (2006), 105-124. MR MR2214455 (2007a:60027)
85. A. Soshnikov, Determinantal random point fields, Uspekhi Mat. Nauk 55 (2000), no. 5(335), 107-160, Translation in Russian Math. Surveys 55 (2000), no. 5, 923975. MR 2002f:60097
86. Alexander Soshnikov, Gaussian limit for determinantal random point fields, Ann. Probab. 30 (2002), no. 1, 171-187. MR 2003e:60106
87. Carsten Thomassen, Resistances and currents in infinite electrical networks, J. Combin. Theory Ser. B 49 (1990), no. 1, 87-102. MR MR1056821 (91d:94029)
88. B. S. Tsirelson, I. A. Ibragimov, and V. N. Sudakov, Norms of Gaussian sample functions, Proceedings of the Third Japan-USSR Symposium on Probability Theory (Tashkent, 1975) (Berlin), Springer, 1976, pp. 20-41. Lecture Notes in Math., Vol. 550. MR 56 \#16756
89. David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991. MR 93d:60002
90. Karol Życzkowski and Hans-Jürgen Sommers, Truncations of random unitary matrices, J. Phys. A 33 (2000), no. 10, 2045-2057. MR MR1748745 (2000m:82023)

Titles in This Series

51 J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág, Zeros of Gaussian analytic functions and determinantal point processes, 2009
50 John T. Baldwin, Categoricity, 2009
49 József Beck, Inevitable randomness in discrete mathematics, 2009
48 Achill Schürmann, Computational geometry of positive definite quadratic forms, 2008
47 Ernst Kunz (with the assistance of and contributions by David A. Cox and Alicia Dickenstein), Residues and duality for projective algebraic varieties, 2008
46 Lorenzo Sadun, Topology of tiling spaces, 2008
45 Matthew Baker, Brian Conrad, Samit Dasgupta, Kiran S. Kedlaya, and Jeremy Teitelbaum (David Savitt and Dinesh S. Thakur, Editors), p-adic geometry: Lectures from the 2007 Arizona Winter School, 2008
44 Vladimir Kanovei, Borel equivalence relations: structure and classification, 2008
43 Giuseppe Zampieri, Complex analysis and CR geometry, 2008
42 Holger Brenner, Jürgen Herzog, and Orlando Villamayor (Juan Elias, Teresa Cortadellas Benítez, Gemma Colomé-Nin, and Santiago Zarzuela, Editors), Three Lectures on Commutative Algebra, 2008
41 James Haglund, The q, t-Catalan numbers and the space of diagonal harmonics (with an appendix on the combinatorics of Macdonald polynomials), 2008
40 Vladimir Pestov, Dynamics of infinite-dimensional groups. The Ramsey-DvoretzkyMilman phenomenon, 2006
39 Oscar Zariski, The moduli problem for plane branches (with an appendix by Bernard Teissier), 2006
38 Lars V. Ahlfors, Lectures on Quasiconformal Mappings, Second Edition, 2006
37 Alexander Polishchuk and Leonid Positselski, Quadratic algebras, 2005
36 Matilde Marcolli, Arithmetic noncommutative geometry, 2005
35 Luca Capogna, Carlos E. Kenig, and Loredana Lanzani, Harmonic measure: Geometric and analytic points of view, 2005
34 E. B. Dynkin, Superdiffusions and positive solutions of nonlinear partial differential equations, 2004
33 Kristian Seip, Interpolation and sampling in spaces of analytic functions, 2004
32 Paul B. Larson, The stationary tower: Notes on a course by W. Hugh Woodin, 2004
31 John Roe, Lectures on coarse geometry, 2003
30 Anatole Katok, Combinatorial constructions in ergodic theory and dynamics, 2003
29 Thomas H. Wolff (Izabella Laba and Carol Shubin, editors), Lectures on harmonic analysis, 2003
28 Skip Garibaldi, Alexander Merkurjev, and Jean-Pierre Serre, Cohomological invariants in Galois cohomology, 2003
27 Sun-Yung A. Chang, Paul C. Yang, Karsten Grove, and Jon G. Wolfson, Conformal, Riemannian and Lagrangian geometry, The 2000 Barrett Lectures, 2002
26 Susumu Ariki, Representations of quantum algebras and combinatorics of Young tableaux, 2002
25 William T. Ross and Harold S. Shapiro, Generalized analytic continuation, 2002
24 Victor M. Buchstaber and Taras E. Panov, Torus actions and their applications in topology and combinatorics, 2002
23 Luis Barreira and Yakov B. Pesin, Lyapunov exponents and smooth ergodic theory, 2002
22 Yves Meyer, Oscillating patterns in image processing and nonlinear evolution equations, 2001
21 Bojko Bakalov and Alexander Kirillov, Jr., Lectures on tensor categories and modular functors, 2001
20 Alison M. Etheridge, An introduction to superprocesses, 2000
19 R. A. Minlos, Introduction to mathematical statistical physics, 2000

TITLES IN THIS SERIES

18 Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, 1999
17 Marcel Berger, Riemannian geometry during the second half of the twentieth century, 2000
16 Harish-Chandra, Admissible invariant distributions on reductive p-adic groups (with notes by Stephen DeBacker and Paul J. Sally, Jr.), 1999
15 Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, 1999
14 Lars Kadison, New examples of Frobenius extensions, 1999
13 Yakov M. Eliashberg and William P. Thurston, Confoliations, 1998
12 I. G. Macdonald, Symmetric functions and orthogonal polynomials, 1998
11 Lars Gårding, Some points of analysis and their history, 1997
10 Victor Kac, Vertex algebras for beginners, Second Edition, 1998
9 Stephen Gelbart, Lectures on the Arthur-Selberg trace formula, 1996
8 Bernd Sturmfels, Gröbner bases and convex polytopes, 1996
7 Andy R. Magid, Lectures on differential Galois theory, 1994
6 Dusa McDuff and Dietmar Salamon, J-holomorphic curves and quantum cohomology, 1994
5 V. I. Arnold, Topological invariants of plane curves and caustics, 1994
4 David M. Goldschmidt, Group characters, symmetric functions, and the Hecke algebra, 1993
3 A. N. Varchenko and P. I. Etingof, Why the boundary of a round drop becomes a curve of order four, 1992
2 Fritz John, Nonlinear wave equations, formation of singularities, 1990
1 Michael H. Freedman and Feng Luo, Selected applications of geometry to low-dimensional topology, 1989

The book examines in some depth two important classes of point processes, determinantal processes and "Gaussian zeros", i.e., zeros of random analytic functions with Gaussian coefficients. These processes share a property of "point-repulsion", where distinct points are less likely to fall close to each other than in processes, such as the Poisson process, that arise from independent sampling. Nevertheless, the treatment in the book emphasizes the use of independence: for random power series, the independence of coefficients is key; for determinantal processes, the number of points in a domain is a sum of independent indicators, and this yields a satisfying explanation of the central limit theorem (CLT) for this point count. Another unifying theme of the book is invariance of considered point processes under natural transformation groups.
The book strives for balance between general theory and concrete examples. On the one hand, it presents a primer on modern techniques on the interface of probability and analysis. On the other hand, a wealth of determinantal processes of intrinsic interest are analyzed; these arise from random spanning trees and eigenvalues of random matrices, as well as from special power series with determinantal zeros.
The material in the book formed the basis of a graduate course given at the IAS-Park City Summer School in 2007; the only background knowledge assumed can be acquired in firstyear graduate courses in analysis and probability.

For additional information
and updates on this book, visit

www.ams.org/bookpages/ulect-5 I

ULECT/51

