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Preface

Random configurations of points in space, also known as point processes, have
been studied in mathematics, statistics and physics for many decades. In mathe-
matics and statistics, the emphasis has been on the Poisson process, which can be
thought of as a limit of picking points independently and uniformly in a large region.
Taking a different perspective, a finite collection of points in the plane can always
be considered as the roots of a polynomial; in this coordinate system, taking the co-
efficients of the polynomial to be independent is natural. Limits of these random
polynomials and their zeros are a core subject of this book; the other class consists
of processes with joint intensities of determinantal form. The intersection of the two
classes receives special attention, in Chapter 5 for instance. Zeros of random poly-
nomials and determinantal processes have been studied primarily in mathematical
physics. In this book we adopt a probabilistic perspective, exploiting independence
whenever possible.

The book is designed for graduate students in probability, analysis, and mathe-
matical physics, and exercises are included. No familiarity with physics is assumed,
but we do assume that the reader is comfortable with complex analysis as in Ahlfors’
text (1) and with graduate probability as in Durrett (20) or Billingsley (6). Possible
ways to read the book are indicated graphically below, followed by an overview of the
various chapters.

The book is organized as follows:
Chapter 1 starts off with a quick look at how zeros of a random polynomial differ
from independently picked points, and the ubiquitous Vandermonde factor makes its
first appearance in the book. Following that, we give definitions of basic notions such
as point processes and their joint intensities.
Chapter 2 provides an introduction to the theory of Gaussian analytic functions
(GAFs) and gives a formula for the first intensity of zeros. We introduce three im-
portant classes of geometric GAFs: planar, hyperbolic and spherical GAFs, whose
zero sets are invariant in distribution under isometries preserving the underlying
geometric space. Further we show that the intensity of zeros of a GAF determines
the distribution of the GAF (Calabi’s rigidity).
Chapter 3 We prove a formula due to Hammersley for computing the joint intensi-
ties of zeros for an arbitrary GAF.
Chapter 4 introduces determinantal processes which are used to model fermions in
quantum mechanics and also arise naturally in many other settings. We show that
general determinantal processes may be realized as mixtures of “determinantal pro-
jection processes”, and use this result to give simple proofs of existence and central
limit theorems. We also present similar results for permanental processes, which
are used to model bosons in quantum mechanics.

vii
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Chapter 5 gives a deeper analysis of the hyperbolic GAF. Despite the many similar-
ities between determinantal processes and zeros of GAFs, this function provides the
only known link between the two fields. For a certain value of the parameter, the
zero set of the hyperbolic GAF is indeed a determinantal process and this discovery
allows one to say a great deal about its distribution. In particular, we give a simple
description of the distribution of the moduli of zeros and obtain sharp asymptotics
for the “hole probability" that a disk of radius r contains no zeros. We also obtain a
law of large numbers and reconstruction result for the hyperbolic GAFs, the proofs
of these do not rely on the determinantal property.
Chapter 6 studies a number of examples of determinantal point processes that arise
naturally in combinatorics and probability. This includes the classical Ginibre and
circular unitary ensembles from random matrix theory, as well as examples arising
from non-intersecting random walks and random spanning trees. We give proofs
that these point processes are determinantal.
Chapter 7 turns to the topic of large deviations. First we prove a very general
result due to Offord which may be applied to an arbitrary GAF. Next we present
more specialized techniques developed by Sodin and Tsirelson which can be used to
determine very precisely, the asymptotic decay of the hole probability for the zero set
of the planar GAF. The computation is more difficult in this setting, since this zero
set is not a determinantal process.
Chapter 8 touches on two advanced topics, dynamical Gaussian analytic functions
and allocation of area to zeros.

In the section on dynamics, we present a method by which the zero set of the
hyperbolic GAF can be made into a time-homogeneous Markov process. This con-
struction provides valuable insight into the nature of the repulsion between zeros,
and we give an SDE description for the evolution of a single zero. This description
can be generalized to simultaneously describe the evolution of all the zeros.

In the section on allocation, we introduce the reader to a beautiful scheme dis-
covered by Sodin and Tsirelson for allocating Lebesgue measure to the zero set of the
planar GAF. The allocation is obtained by constructing a random potential as a func-
tion of the planar GAF and then allowing points in the plane to flow along the gra-
dient curves of the potential in the direction of decay. This procedure partitions the
plane into basins of constant area, and we reproduce an argument due to Nazarov,
Sodin and Volberg that the diameter of a typical basin has super-exponentially de-
caying tails.

The inter-dependence of the chapters is shown in Figure 1 schematically.

Acknowledgements
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FIGURE 1. Dependence among chapters.
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Cortadellas Beńıtez, Gemma Colomé-Nin, and Santiago Zarzuela, Editors),
Three Lectures on Commutative Algebra, 2008

41 James Haglund, The q, t-Catalan numbers and the space of diagonal harmonics (with an
appendix on the combinatorics of Macdonald polynomials), 2008

40 Vladimir Pestov, Dynamics of infinite-dimensional groups. The Ramsey–Dvoretzky–
Milman phenomenon, 2006

39 Oscar Zariski, The moduli problem for plane branches (with an appendix by Bernard
Teissier), 2006

38 Lars V. Ahlfors, Lectures on Quasiconformal Mappings, Second Edition, 2006

37 Alexander Polishchuk and Leonid Positselski, Quadratic algebras, 2005

36 Matilde Marcolli, Arithmetic noncommutative geometry, 2005

35 Luca Capogna, Carlos E. Kenig, and Loredana Lanzani, Harmonic measure:
Geometric and analytic points of view, 2005

34 E. B. Dynkin, Superdiffusions and positive solutions of nonlinear partial differential
equations, 2004

33 Kristian Seip, Interpolation and sampling in spaces of analytic functions, 2004

32 Paul B. Larson, The stationary tower: Notes on a course by W. Hugh Woodin, 2004

31 John Roe, Lectures on coarse geometry, 2003

30 Anatole Katok, Combinatorial constructions in ergodic theory and dynamics, 2003

29 Thomas H. Wolff (Izabella �Laba and Carol Shubin, editors), Lectures on harmonic
analysis, 2003

28 Skip Garibaldi, Alexander Merkurjev, and Jean-Pierre Serre, Cohomological
invariants in Galois cohomology, 2003

27 Sun-Yung A. Chang, Paul C. Yang, Karsten Grove, and Jon G. Wolfson,
Conformal, Riemannian and Lagrangian geometry, The 2000 Barrett Lectures, 2002

26 Susumu Ariki, Representations of quantum algebras and combinatorics of Young

tableaux, 2002

25 William T. Ross and Harold S. Shapiro, Generalized analytic continuation, 2002

24 Victor M. Buchstaber and Taras E. Panov, Torus actions and their applications in
topology and combinatorics, 2002

23 Luis Barreira and Yakov B. Pesin, Lyapunov exponents and smooth ergodic theory,
2002

22 Yves Meyer, Oscillating patterns in image processing and nonlinear evolution equations,
2001

21 Bojko Bakalov and Alexander Kirillov, Jr., Lectures on tensor categories and
modular functors, 2001

20 Alison M. Etheridge, An introduction to superprocesses, 2000

19 R. A. Minlos, Introduction to mathematical statistical physics, 2000



TITLES IN THIS SERIES

18 Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, 1999

17 Marcel Berger, Riemannian geometry during the second half of the twentieth century,
2000

16 Harish-Chandra, Admissible invariant distributions on reductive p-adic groups (with
notes by Stephen DeBacker and Paul J. Sally, Jr.), 1999

15 Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, 1999

14 Lars Kadison, New examples of Frobenius extensions, 1999

13 Yakov M. Eliashberg and William P. Thurston, Confoliations, 1998

12 I. G. Macdonald, Symmetric functions and orthogonal polynomials, 1998

11 Lars G̊arding, Some points of analysis and their history, 1997

10 Victor Kac, Vertex algebras for beginners, Second Edition, 1998

9 Stephen Gelbart, Lectures on the Arthur-Selberg trace formula, 1996
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