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Preface

Indistinguishable things are identical.1

G.W. Leibniz (1646–1714)

This primer to the theory of pseudorandomness presents a fresh look at the question
of randomness, which arises from a complexity theoretic approach to randomness.
The crux of this (complexity theoretic) approach is the postulate that a distribution
is random (or rather pseudorandom) if it cannot be distinguished from the uniform
distribution by any efficient procedure. Thus, (pseudo)randomness is not an inherent
property of an object, but is rather subjective to the observer.

At the extreme, this approach says that the question of whether the world is
actually deterministic or allows for some free choice (which may be viewed as a source
of randomness) is irrelevant. What matters is how the world looks to us and to various
computationally bounded devices. That is, if some phenomenon looks random, then
we may treat it as if it is random. Likewise, if we can generate sequences that cannot
be distinguished from the uniform distribution by any efficient procedure, then we
can use these sequences in any efficient randomized application instead of the ideal
coin tosses that are postulated in the design of this application.

The pivot of the foregoing approach is the notion of computational indistinguisha-
bility, which refers to pairs of distributions that cannot be distinguished by efficient
procedures. The most fundamental incarnation of this notion associates efficient pro-
cedures with polynomial-time algorithms, but other incarnations that restrict atten-
tion to different classes of distinguishing procedures also lead to important insights.
Likewise, the effective generation of pseudorandom objects, which is of major con-
cern, is actually a general paradigm with numerous useful incarnations (which differ
in the computational complexity limitations imposed on the generation process).

Following the foregoing principles, we briefly outline some of the key elements
of the theory of pseudorandomness. Indeed, the key concept is that of a pseudo-
random generator, which is an efficient deterministic procedure that stretches short
random seeds into longer pseudorandom sequences. Thus, a generic formulation
of pseudorandom generators consists of specifying three fundamental aspects – the
stretch measure of the generators; the class of distinguishers that the generators are

1This is Leibniz’s Principle of Identity of Indiscernibles. Leibniz admits that counterexamples to
this principle are conceivable but will not occur in real life because God is much too benevolent. We
thus believe that he would have agreed to the theme of this text, which asserts that indistinguishable

things should be considered as if they were identical.

ix
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supposed to fool (i.e., the algorithms with respect to which the computational indis-
tinguishability requirement should hold); and the resources that the generators are
allowed to use (i.e., their own computational complexity).

The archetypical case of pseudorandom generators refers to efficient generators
that fool any feasible procedure; that is, the potential distinguisher is any proba-
bilistic polynomial-time algorithm, which may be more complex than the generator
itself (which, in turn, has time-complexity bounded by a fixed polynomial). These
generators are called general-purpose, because their output can be safely used in any
efficient application. Such (general-purpose) pseudorandom generators exist if and
only if there exist functions (called one-way functions) that are easy to evaluate but
hard to invert.

In contrast to such (general-purpose) pseudorandom generators, for the purpose
of derandomization (i.e., converting randomized algorithms into corresponding de-
terministic ones), a relaxed definition of pseudorandom generators suffices. In partic-
ular, for such a purpose, one may use pseudorandom generators that are somewhat
more complex than the potential distinguisher (which represents a randomized al-
gorithm to be derandomized). Following this approach, adequate pseudorandom
generators yield a full derandomization of probabilistic polynomial-time algorithms
(e.g., BPP = P), and such generators can be constructed based on the assump-
tion that some exponential-time solvable problems (i.e., problems in E) have no
sub-exponential size circuits.

Indeed, both the general-purpose pseudorandom generators and the aforemen-
tioned “derandomizers” demonstrate that randomness and computational difficulty
are related. This trade-off is not surprising in light of the fact that the very defi-
nition of pseudorandomness refers to computational difficulty (i.e., the difficulty of
distinguishing the pseudorandom distribution from a truly random one).

Finally, we mention that it is also beneficial to consider pseudorandom genera-
tors that fool space-bounded distinguishers and generators that exhibit some limited
random behavior (e.g., outputting a pairwise independent or a small-bias sequence).
Such (special-purpose) pseudorandom generators can be constructed without relying
on any computational complexity assumptions, because the behavior of the corre-
sponding (limited) distinguishers can be analyzed even at the current historical time.
Nevertheless, such (special-purpose) pseudorandom generators offer numerous appli-
cations.

Note: The study of pseudorandom generators is part of complexity theory
and some basic familiarity with complexity theory will be assumed in the current
text. In fact, the current primer is an abbreviated (and somewhat revised) version
of [24, Chap. 8]. Nevertheless, we believe that there are merits to providing a sep-
arate treatment of the theory of pseudorandomness, since this theory is of natural
interest to various branches of mathematics and science. In particular, we hope to
reach readers that may not have a general interest in complexity theory at large
and/or do not wish to purchase a book on the latter topic.

Acknowledgments. We are grateful to Alina Arbitman and Ron Rothblum for
their comments and suggestions regarding this primer.

cf.( e.g.,[24] ,)

Oded Goldreich
Weizmann Institute of Science
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