AMS Bookstore LOGO amslogo
AMS TextbooksAMS Applications-related Books
Data Mining and Mathematical Programming
Edited by: Panos M. Pardalos, University of Florida, Gainesville, FL, and Pierre Hansen, HEC Montréal, QC, Canada
A co-publication of the AMS and Centre de Recherches Mathématiques.

CRM Proceedings & Lecture Notes
2008; 234 pp; softcover
Volume: 45
ISBN-10: 0-8218-4352-4
ISBN-13: 978-0-8218-4352-9
List Price: US$88
Member Price: US$70.40
Order Code: CRMP/45
[Add Item]

Request Permissions

Data mining aims at finding interesting, useful or profitable information in very large databases. The enormous increase in the size of available scientific and commercial databases (data avalanche) as well as the continuing and exponential growth in performance of present day computers make data mining a very active field. In many cases, the burgeoning volume of data sets has grown so large that it threatens to overwhelm rather than enlighten scientists. Therefore, traditional methods are revised and streamlined, complemented by many new methods to address challenging new problems. Mathematical Programming plays a key role in this endeavor. It helps us to formulate precise objectives (e.g., a clustering criterion or a measure of discrimination) as well as the constraints imposed on the solution (e.g., find a partition, a covering or a hierarchy in clustering). It also provides powerful mathematical tools to build highly performing exact or approximate algorithms.

This book is based on lectures presented at the workshop on "Data Mining and Mathematical Programming" (October 10-13, 2006, Montreal) and will be a valuable scientific source of information to faculty, students, and researchers in optimization, data analysis and data mining, as well as people working in computer science, engineering and applied mathematics.

Titles in this series are co-published with the Centre de Recherches Mathématiques.


Graduate students and research mathematicians interested in optimization, data analysis, and data mining.

Powered by MathJax

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia