AMS Bookstore LOGO amslogo
AMS TextbooksAMS Applications-related Books
Coarse Cohomology and Index Theory on Complete Riemannian Manifolds
John Roe

Memoirs of the American Mathematical Society
1993; 90 pp; softcover
Volume: 104
ISBN-10: 0-8218-2559-3
ISBN-13: 978-0-8218-2559-4
List Price: US$34
Individual Members: US$20.40
Institutional Members: US$27.20
Order Code: MEMO/104/497
[Add Item]

Request Permissions

"Coarse geometry" is the study of metric spaces from the asymptotic point of view: two metric spaces (such as the integers and the real numbers) which "look the same from a great distance" are considered to be equivalent. This book develops a cohomology theory appropriate to coarse geometry. The theory is then used to construct "higher indices" for elliptic operators on noncompact complete Riemannian manifolds. Such an elliptic operator has an index in the \(K\)-theory of a certain operator algebra naturally associated to the coarse structure, and this \(K\)-theory then pairs with the coarse cohomology. The higher indices can be calculated in topological terms thanks to the work of Connes and Moscovici. They can also be interpreted in terms of the \(K\)-homology of an ideal boundary naturally associated to the coarse structure. Applications to geometry are given, and the book concludes with a discussion of the coarse analog of the Novikov conjecture.


Researchers in global analysis and geometry.

Table of Contents

  • Introduction
  • Basic properties of coarse cohomology
  • Computation of coarse cohomology
  • Cyclic cohomology and index theory
  • Coarse cohomology and compactification
  • Examples and applications
  • References
Powered by MathJax

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia