AMS Bookstore LOGO amslogo
AMS TextbooksAMS Applications-related Books
Projective Modules over Lie Algebras of Cartan Type
Daniel K. Nakano

Memoirs of the American Mathematical Society
1992; 84 pp; softcover
Volume: 98
ISBN-10: 0-8218-2530-5
ISBN-13: 978-0-8218-2530-3
List Price: US$29
Individual Members: US$17.40
Institutional Members: US$23.20
Order Code: MEMO/98/470
[Add Item]

Request Permissions

This monograph focuses on extending theorems for the classical Lie algebras in order to determine the structure and representation theory for Lie algebras of Cartan type. More specifically, Nakano investigates the block theory for the restricted universal enveloping algebras of the Lie algebras of Cartan type. The first section employs techniques developed by Holmes and Nakano to prove a Brauer-Humphreys reciprocity law for graded restricted Lie algebras and also to find the decompositions for the intermediate (Verma) modules used in the reciprocity law. The second section uses this information to investigate the structure of projective modules for the Lie algebras of types W and K. The restricted enveloping algebras for these Lie algebras are shown to have one block. Furthermore, Nakano provides a procedure for computing the Cartan invariants for Lie algebras of types W and K, given knowledge about the decomposition of the generalized Verma modules and about the Jantzen matrix of the classical/reductive zero component. Noteworthy for its readability and the continuity of its theme and purpose, this monograph appeals to graduate students and researchers interested in Lie algebras.


Graduate students and researchers interested in Lie algebras.

Table of Contents

  • The Brauer- BGG reciprocity theorem
  • Verma modules over generalized Witt algebras
  • Cartan invariants for Lie algebras of Cartan type
Powered by MathJax

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia