
Preface  Table of Contents  Supplementary Material 
 This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs. Request an examination or desk copy. Readership Undergraduate and graduate students interested in studying the Fourier transform. Reviews "The book is a detailed and very readable treatise on the theory and practice of series expansions and transforms. The primary audience consists of advanced undergraduates in mathematics, physics, and engineering, but the book is also a useful reference for more advanced workers . . . The strength of the book comes from its careful presentation of theory followed by detailed applications, with good illustrations, and finally a generous collection of exercises (with answers). The prose is smooth and gives understandable discussions of technical difficulties . . . This text can surely be recommended for use in a one or two semester course, or as a reference for graduate students or other persons who want to see what sort of problems Fourier analysis was invented to solve."  C. F. Dunkl, Zentralblatt MATH "With the same mastery as in his Real analysis, the author now offers us this excellent textbook on Fourier analysis: Fourier series, orthogonal systems, Bessel functions, Fourier and Laplace transforms, which are all very powerful mathematical tools in many a scientific domain. Without being exhaustive and without falling into a profusion of boring details, it nevertheless gives a panorama of these topics that is as complete as the framework of the book allows. Thus this text, which is designed for courses at the advanced undergraduate level and beyond, will also serve as a useful reference book."  Mathematical Reviews 


AMS Home 
Comments: webmaster@ams.org © Copyright 2014, American Mathematical Society Privacy Statement 