AMS Bookstore LOGO amslogo
AMS TextbooksAMS Applications-related Books
The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups
James Arthur, University of Toronto, ON, Canada

Colloquium Publications
2013; 590 pp; hardcover
Volume: 61
ISBN-10: 0-8218-4990-5
ISBN-13: 978-0-8218-4990-3
List Price: US$115
Member Price: US$92
Order Code: COLL/61
[Add Item]

Request Permissions

Within the Langlands program, endoscopy is a fundamental process for relating automorphic representations of one group with those of another. In this book, Arthur establishes an endoscopic classification of automorphic representations of orthogonal and symplectic groups \(G\). The representations are shown to occur in families (known as global \(L\)-packets and \(A\)-packets), which are parametrized by certain self-dual automorphic representations of an associated general linear group \(GL(N)\). The central result is a simple and explicit formula for the multiplicity in the automorphic discrete spectrum of \(G\) for any representation in a family.

The results of the volume have already had significant applications: to the local Langlands correspondence, the construction of unitary representations, the existence of Whittaker models, the analytic behaviour of Langlands \(L\)-functions, the spectral theory of certain locally symmetric spaces, and to new phenomena for symplectic epsilon-factors. One can expect many more. In fact, it is likely that both the results and the techniques of the volume will have applications to almost all sides of the Langlands program.

The methods are by comparison of the trace formula of \(G\) with its stabilization (and a comparison of the twisted trace formula of \(GL(N)\) with its stabilization, which is part of work in progress by Moeglin and Waldspurger). This approach is quite different from methods that are based on \(L\)-functions, converse theorems, or the theta correspondence. The comparison of trace formulas in the volume ought to be applicable to a much larger class of groups. Any extension at all will have further important implications for the Langlands program.


Research mathematicians interested in automorphic forms, the Langlands program, and number theory.

Powered by MathJax

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia