AMS Bookstore LOGO amslogo
AMS TextbooksAMS Applications-related Books
Higher Order Fourier Analysis
Terence Tao, University of California, Los Angeles, CA

Graduate Studies in Mathematics
2012; 187 pp; hardcover
Volume: 142
ISBN-10: 0-8218-8986-9
ISBN-13: 978-0-8218-8986-2
List Price: US$54
Member Price: US$43.20
Order Code: GSM/142
[Add Item]

Traditional Fourier analysis, which has been remarkably effective in many contexts, uses linear phase functions to study functions. Some questions, such as problems involving arithmetic progressions, naturally lead to the use of quadratic or higher order phases. Higher order Fourier analysis is a subject that has become very active only recently. Gowers, in groundbreaking work, developed many of the basic concepts of this theory in order to give a new, quantitative proof of Szemerédi's theorem on arithmetic progressions. However, there are also precursors to this theory in Weyl's classical theory of equidistribution, as well as in Furstenberg's structural theory of dynamical systems.

This book, which is the first monograph in this area, aims to cover all of these topics in a unified manner, as well as to survey some of the most recent developments, such as the application of the theory to count linear patterns in primes. The book serves as an introduction to the field, giving the beginning graduate student in the subject a high-level overview of the field. The text focuses on the simplest illustrative examples of key results, serving as a companion to the existing literature on the subject. There are numerous exercises with which to test one's knowledge.


Graduate students and research mathematicians interested in harmonic analysis and number theory.

Powered by MathJax

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia