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S-Mod is faithfully exact if and only if % (M) # 0 for every nonzero R-module M,
if and only if # () # 0 for every nonzero morphism ¢ in R-Mod.

1.25. - Prove that localization (Exercise 1.4) is an exact functor.
In fact, prove that localization ‘preserves homology’: if

dit1 d;
M. Lot Mi+1 Mz Mi—l

is a complex of R-modules and S is a multiplicative subset of R, then the localization
S—LH;(M,) of the i-th homology of M, is the i-th homology H;(S~'M,) of the
localized complex

1 . S~ diq
S Mo%S Mi+1*>

S7d;
S_lMi — S_lMi,1 —_—
[2.12, 2.21, 2.22]

1.26. Prove that localization is faithfully exact in the following sense: let R be a
commutative ring, and let

() 0 A B C 0

be a sequence of R-modules. Then (*) is exact if and only if the induced sequence
of Ry-modules

0 Ap B, Cy 0

is exact for every prime ideal p of R, if and only if it is exact for every maximal
ideal p. (Cf. Exercise V.4.12.)

1.27. > Let R, S be rings. Prove that right-adjoint functors R-Mod — S-Mod are
left-exact and left-adjoint functors are right-exact. [§1.5]

2. Tensor products and the Tor functors

In the rest of the chapter we will work in the category R-Mod of modules over a
commutative ring R. Essentially everything we will see can be upgraded to the
noncommutative case without difficulty, but a bit of structure is lost in that case.
For example, if R is not commutative, then in the category R-Mod of left- R-modules
the Hom-sets Homp mod(M, N) are ‘only’ abelian groups (cf. the end of §II1.5.2).
A tensor product M ®z N can only be defined if M is a right-R-module and N is
a left-R-module (in a sense, the two module structures annihilate each other, and
what is left is an abelian group). By contrast, in the commutative case we will be
able to define M ®g N simply as an R-module. In general, the theory goes through
as in the commutative case if the modules carry compatible left- and right-module
structures, except in questions such as the commutativity of tensors, where it would
be unreasonable to expect the commutativity of R to have no bearing. All in all, the
commutative case is a little leaner, and (we believe) it suffices in terms of conveying
the basic intuition on the general features of the theory.

Thus, R will denote a fixed commutative ring, unless stated otherwise.
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2.1. Bilinear maps and the definition of tensor product. If M and N are
R-modules, we observed in the distant past (§I11.6.1) that M @ N serves as both
the product and coproduct of M and N: a situation in which a limit coincides with
a colimit. As a set, M @& N is just M x N; the R-module structure on M & N
is defined by componentwise addition and multiplication by scalars. An R-module
homomorphism
MoN — P

is determined by R-module homomorphisms M — P and N — P (this is what
makes M @ N into a coproduct).

But there is another way to map M x N to an R-module P, compatibly with
the R-module structures.

Definition 2.1. Let M, N, P be R-modules. A function ¢ : M x N — P is
R-bilinear if
e Vm € M, the function n — ¢(m,n) is an R-module homomorphism N — P,

e Vn € N, the function m — ¢(m,n) is an R-module homomorphism M — P._

Thus, if ¢ : M x N — P is R-bilinear, then Ym € M, Vny,no € N, Vry,ry € R,
@(m,riny + rang) = rip(m,ny) + rap(m, na),

and similarly for ¢(_,n).

Note that ¢ itself is not linear, even if we view M x N as the R-module M & N,
as recalled above. On the other hand, there ought to be a way to deal with R-
bilinear maps ‘as if’ they were R-linear, because such maps abound in the context
of R-modules. For example, the very multiplication on R is itself an R-bilinear map

Rx R — R.

Our experience with universal properties suggests the natural way to approach this
question. What we need is a new R-module M ®p N, with an R-bilinear map

X :MxN—M®grN,

such that every R-bilinear map M x N — P factors uniquely through this new
module M ®r N,

MxN——p

| <

M®r N
in such a way that the map @ is a usual R-module homomorphism.

Thus, M ®r N would be the ‘best approximation’ to M x N available in R-Mod,
if we want to view R-bilinear maps from M x N as R-linear. The module M ® g N
is called the tensor product of M and N over R. The subscript R is very important:
if M and N are modules over two rings R, S, then S-bilinearity is not the same
as R-bilinearity, so M @ g N and M ®g N may be completely different objects. In
context, it is not unusual to drop the subscript if the base ring is understood, but
we do not recommend this practice.
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The prescription given above expresses the tensor product as the solution to
a universal problem; therefore we know right away that it will be unique up to
isomorphism, if it exists (Proposition 1.5.4 once more), and we could proceed to
study it by systematically using the universal property.

Example 2.2. For all R-modules N, R®r N = N.

Indeed, every R-bilinear R x N — P factors through N (as is immediately
verified):

RxN——P
®l /
a
N
where ®(r,n) = rn. By the uniqueness property of universal objects, necessarily
N=R®prN. J

For another example, it is easy to see that there must be a canonical isomor-
phism
M®r NS N®g M.

Indeed, every R-bilinear ¢ : M x N — P may be decomposed as'’

MXN N XM

@

where ¥(n, m) = p(m,n); ¥ is also R-bilinear, so it factors uniquely through N ® g
M. Therefore, o factors uniquely through N ®z M, and this is enough to conclude
that there is a canonical isomorphism N ®zr M = M ®pr N.

However, such considerations are a little moot unless we establish that M ® g N
exists to begin with. This requires a bit of work.

Lemma 2.3. Tensor products exist in R-Mod.

Proof. Given R-modules M and N, we construct ‘by hand’ a module satisfying
the universal requirement. Let F(M x N) = R®M*N) he the free R-module on
M x N (§I11.6.3). This module comes equipped with a set-map

j:Mx N — FE(M x N),

universal with respect to all set-maps from M x N to any R-module P; the main task
is to make this into an R-bilinear map. For example, we have to identify elements
in FR(M x N) of the form j(m,n; + ny) with elements j(m,ny) + j(m,ns), etc.
Thus, let K be the R-submodule of FF(M x N) generated by all elements

J(m,ring 4+ rong) — rij(m,ny) — roj(m, ng)
and

Jj(rimy +rama,n) —rij(mi,n) —raj(me,n)

10Here is one situation in which the commutativity of R does play a role: if R is not commu-
tative, then this decomposition becomes problematic, even if M and N carry bimodule structures.
One can therefore not draw the conclusion M ®r N =2 N ®gr M in that case.



2. Tensor products and the Tor functors 503

as m,my, mo range in M, n,ny,no range in N, and 71,7y range in R. Let
FE(M x N)
K )
endowed with the map ® : M x N — M ®pr N obtained by composing j with the
natural projection:

M ®r N =

®@:MxN—5FRMxN)—— Mo N =FE(M x N)/K

The element ®(m,n) (that is, the class of j(m,n) modulo K) is denoted m ® n.

It is evident that (m,n) — m ®n defines an R-bilinear map. We have to check
that M ®pr N satisfies the universal property, and this is also straightforward. If
@: M x N — P is any R-bilinear map, we have a unique induced R-linear map ¢
from the free R-module, by the universal property of the latter:

MxN—2 s p

FE(M x N)

We claim that ¢ restricts to 0 on K. Indeed, to verify this, it suffices to verify
that ¢ sends to zero every generator of K, and this follows from the fact that ¢ is
R-bilinear. For example,

(g (m,ring + rang) — rij(m, ni) — raj(m, nz))
= p(j(m,rin1 + rana)) — r1p(j(m, n1)) — r24(j(m, n2))
= p(m,r1n1 + rang) — rip(m,ny) — rap(m, na)
= 0.

It follows (by the universal property of quotients!) that ¢ factors uniquely through
the quotient by K:

M x N

M@z N =FR(M x N)/K

and we are done. O

As is often the case with universal objects, the explicit construction used to
prove the existence of M ®p N is almost never invoked. It is however good to
keep in mind that elements of M ® p N arise from elements of the free R-module on
M x N, and therefore an arbitrary element of M ®g N is a finite linear combination

(*) Zrz‘(mi ® n;)

7
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with r; € R, m; € M, and n; € N. The R-bilinearity of @ : M x N — M ®r N
amounts to the rules:

m® (n1 +ng) =m@n; +m® ng,
(m1+mo)@n=m; @n+mgn,
m® (rn) = (rm) @ n =r(m ®n),

for all m, my,mo € M, ny,ne,n € N, and r € R. In particular, note that the coeffi-
cients r; in (*) are not necessary, since they can be absorbed into the corresponding
terms m; ® n;:

3 (]

Elements of the form m ®n (that is, needing only one summand in the expres-
sion) are called pure tensors. Dear reader, please remember that pure tensors are
special: usually, not every element of the tensor product is a pure tensor. See Exer-
cise 2.1 for one situation in which every tensor happens to be pure, and appreciate
how special that is.

Pure tensors are nevertheless very useful, as a set of generators for the tensor
product. For example, if two homomorphisms «,(3 : M ® g N — P coincide on
pure tensors, then o = 3. Frequently, computations involving tensor products are
reduced to simple verifications for pure tensors.

2.2. Adjunction with Hom and explicit computations. The tensor product
is left-adjoint to Hom. Once we parse what this rough statement means, it will
be a near triviality; but as we have found out in §1.5, the mere fact that ®p is
left-adjoint to any functor is enough to draw interesting conclusions about it.

First, we note that every R-module N defines, via ® g, a new covariant functor
R-Mod — R-Mod, defined on objects by

M— M XRr N.
To see how this works on morphisms, let
Qo M1 — M2

be an R-module homomorphism. Crossing with N and composing with ® defines
an R-bilinear map
M1 XN—>M2XN—>M2®N,

and hence an induced R-linear map
a@N: M @N — My ® N.

On pure tensors, this map is simply given by m ® n +— «(m) ® n, and functoriality
follows immediately: if 8 : My — M; is a second homomorphism, then (o ® N) o
(6® N) and (oo ) ® N both map pure tensors m ® n to a(f(m)) @ n, so they
must agree on all tensors.

The adjunction statement given at the beginning of this subsection compares
this functor with the covariant functor P +— Hompg mod(N, P); cf. §1.2. Let’s see
more precisely how it works.
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We have defined M ®g N so that giving an R-linear map M ®r N — P to an
R-module P is ‘the same as’ giving an R-bilinear map M x N — P. Now recall
the definition of R-bilinear map: ¢ : M x N — P is R-bilinear if both ¢(m,_)
and ¢(_,n) are R-linear maps, for all m € M and n € N. The first part of this
prescription says that ¢ determines a function

M — Hompg(N, P);

the second part says that this is an R-module homomorphism. Therefore, an R-
bilinear map is ‘the same as’ an element of

Homp(M,Hompg (N, P)).

These simple considerations should be enough to make the following seemingly
complicated statement rather natural:

Lemma 2.4. For all R-modules M, N, P, there is an isomorphism of R-modules

Homp(M,Homp (N, P)) = Homg(M ®g N, P).

Proof. As noted before the statement, every o € Homp(M, Homp(N, P)) deter-
mines an R-bilinear map ¢ : M x N — P, by
(m,n) — a(m)(n).
By the universal property, ¢ factors uniquely through an R-linear map @ : M ®p
N — P. Therefore,  determines a well-defined element p € Homg(M @5 N, P).
The reader will check (Exercise 2.11) that this map « +— % is R-linear and

construct an inverse. O

Corollary 2.5. For every R-module N, the functor _®pr N is left-adjoint to the
functor Hompg(N, ).

Proof. The claim is that the isomorphism found in Lemma 2.4 is natural in the
sense hinted at, but not fully explained, in §1.5; the interested reader should have
no problems checking this naturality. O

By Lemma 1.17 (or rather its co-version), we can conclude that for each R-
module N, the functor  ®pg N preserves colimits, and so does M ®p _, by the basic
commutativity of tensor products verified in §2.1. In particular, and this is good
material for another Pavlovian reaction,

M ®p _and _®pg N are right-exact functors
(cf. Example 1.18).

These observations have several consequences, which make ‘computations’ with
tensor products more reasonable. Here is a sample:

Corollary 2.6. For all R-modules My, Ms, N,

(My ®p M) @ N = (M, ®g N) © (M ®g N).



506 VIII. Linear algebra, reprise

(Moreover, by commutativity, M @ (N1 & Na) = (M ®r N1) @ (M ®r N) just
as well.) Indeed, coproducts are colimits. In fact, ® must then commute with
arbitrary (possibly infinite) direct sums:

(P M.) @r N = (M, @5 N)

a€cA acA
This computes all tensors for free R-modules:

Corollary 2.7. For any two sets A, B:
R@A ®R REBB o~ R@AXB.

Indeed, ‘distributing’ the direct sum identifies the left-hand side with the direct
sum (R®4)®B which is isomorphic to the right-hand side (Exercise I11.6.5). For
finitely generated free modules, this simply says that RY™ @ R®™ = ROmn,

Note that if eq,..., e, generate M and f1,..., f, generate N, then the pure
tensors e; ® f; must generate M @z N. In the free case, if the e;’s and f;’s form bases
of R®™ R®" resp., then the mn elements e; ® f; must be a basis for R®™ @ R%™.
Indeed they generate it; hence they must be linearly independent since this module
is free of rank mn. In particular, this is all that can happen if R is a field k£ and the
modules are, therefore, just k-vector spaces (Proposition VI.1.7). Tensor products
are more interesting over more general rings.

Corollary 2.8. For all R-modules N and all ideals I of R,

R N
ZRr N~ —.
7 o8 IN
Indeed, _ ®p N is right-exact; thus, the exact sequence
R
0 I R — 0
I

induces an exact sequence
R
I®RN—>R®RN—>7®RN—>O.

The image of I @z N in R®r N = N is generated by the image of the pure tensors
a®n with a € I, n € N; this is IN. Thus, the second sequence identifies N/(IN)
with (R/I) ®r N, as needed.
Corollary 2.9. For all ideals I, J of R,
R_R, R
L% T "I+ T
This follows immediately from Corollary 2.8 and the ‘third isomorphism theorem’,
Proposition I11.5.17. Indeed, IR/J = (I + J)/J.
Example 2.10. Z/mZ ®y Z/nZ = 7./ gcd(m, n)Z.
Indeed, (m) 4 (n) = (ged(m, n)) in Z. For instance,
7 Z
— Q7 7 =0,
)-

a favorite on qualifying exams (cf. Exercise 2.2
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Corollary 2.8 is a template example for a basic application of ®: tensor prod-
ucts may be used to transfer constructions involving R (such as quotienting by an
ideal I) to constructions involving R-modules (such as quotienting by a correspond-
ing submodule). There are several instances of this operation; the reader will take
a look at localization in Exercise 2.5.

2.3. Exactness properties of tensor; flatness. It is important to remember
that the tensor product is not an exact functor: left-exactness may very well fail.
This can already be observed in the sequence appearing in the discussion following
Corollary 2.8: for an ideal I of R and an R-module N, the map

I®r N — N
induced by the inclusion I C R after tensoring by N may not be injective.

Example 2.11. Multiplication by 2 gives an inclusion
ZC'—2> 7,

identifying the first copy of Z with the ideal (2) in the second copy. Tensoring by
Z/27 over Z (and keeping in mind that R @ g N = N), we get the homomorphism

Z 2 7

.

27, 27
which sends both [0] and [1] to zero. This is the zero-morphism, and in particular
it is not injective. J

On the other hand, if N =2 R®4 is free, then _ ®p N is exact. Indeed, every
inclusion

My C M,
is mapped to M; @ R®4 — My, ®r R®4, which is identified (via Corollary 2.6)
with the inclusion
MPA C MPA,
Example 2.12. Since vector spaces are free (Proposition VI.1.7), tensoring is exact
in k-Vect: if

0 Vi Vs V3 0

is an exact sequence of k-vector spaces and W is a k-vector space, then the induced
sequence

0—ViewW ——=Vo@p, W ——= V@, W —=0

is exact on both sides. 2

The reader should now wonder whether it is useful to study a condition on
an R-module N, guaranteeing that the functor _ @z N is left-exact as well as
right-exact.

Definition 2.13. An R-module N is flat if the functor ®p N is exact. J
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In the exercises the reader will explore easy properties of this notion and useful
equivalent formulations in particular cases.

We have already checked that Z/27Z is not a flat Z-module, while free modules
are flat. Flat modules are hugely important: in algebraic geometry, ‘flatness’ is
the condition expressing the fact that the objects in a family vary ‘continuously’,
preserving certain key invariants.

Example 2.14. Consider the affine algebraic set # (zy) in the plane A? (over a
fixed field k) and the ‘projection on the first coordinate’ ¥ (zy) — AL, (z,y) — x:

zy =0

|

n
T

0

In terms of coordinate rings (cf. §VII.2.3), this map corresponds to the homomor-
phism of k-algebras:

K] — F2 Y
(zy)
defined by mapping x to the coset = + (ay) (this will be completely clear to the
reader who has worked out Exercise VII.2.12!). This homomorphism defines a k[z]-
module structure on k[x,y]/(xy), and we can wonder whether the latter is flat in
the sense of Definition 2.13. From the geometric point of view, clearly something
‘not flat’ is going on over the point x = 0, so we consider the inclusion of the ideal
() in k[z]:

Tensoring by k[z,y]/(xy), we obtain

klz,y] o K[z,
(zy) (zy)

which is not injective, because it sends to zero the nonzero coset y+ (xy). Therefore
Elx,y]/(xy) is not flat as a k[x]-module.

The term flat was inspired precisely by such ‘geometric’ examples. a
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2.4. The Tor functors. The ‘failure of exactness’ of the functor _ ®pr N is mea-
sured by another functor R-Mod — R-Mod, called Torf(_, N): if N is flat (for
example, if it is free), then Tor®(M, N) = 0 for all modules M. In fact (amazingly)
if

0 A B C 0

is an exact sequence of R-modules, one obtains a new exact sequence after tensoring
by any N:

Tor®(C,N) —— A®@r N —— B®r N —— C@r N —— 0,

so if Torf(C, N) = 0, then the module on the left vanishes; thus every short exact
sequence ending in C remains exact after tensoring by N in this case. In fact
(astonishingly) for all N one can continue this sequence with more Tor-modules,
obtaining a longer exact complex:

Torf (A, N) — Torf (B, N) — Torf(C,N) - A®r N -+ B®r N — C®gr N — 0.

This is not the end of the story: the complex may be continued even further by
invoking new functors Tors (_, N'), Torf(_, N), etc. These are the derived functors
of tensor. To ‘compute’ these functors, one may apply the following procedure:
given an R-module M, find a free resolution (§VI1.4.2)

cer—— OS2 ——— R®S R®So0 M 0;

throw M away, and tensor the free part by N, obtaining a complex M, ®r N:

N®S2 N®S1 ——— N®So —— ()

(recall again that tensor commutes with colimits, hence with direct sums, therefore
R®™ @r N = N®™): then take the homology of this complex (cf. §I11.7.3). As-
toundingly, this will not depend (up to isomorphism) on the chosen free resolution,
so we can define
Torf'(M,N) := Hi(M, ® N).

For example, according to this definition Tor(lf (M,N) = M ®pr N (Exercise 2.14),
and Torf (M, N) = 0 for all i > 0 and all M if N is flat (because then tensoring by
N is an exact functor, so tensoring the resolution of M returns an exact sequence,
thus with no homology). In fact, this proves a remarkable property of the Tor
functors: if Torf (M, N) = 0 for all M, then Tor:(M, N) = 0 for all i > 0 for all
modules M. Indeed, N is then flat.

At this point you may feel that something is a little out of balance: why
focus on the functor _ ® g N, rather than M ®p _? Since M ®pz N is canonically
isomorphic to N ®r M (in the commutative case; cf. Example 2.2), we could expect
the same to apply to every Torf: TorlR (M, N) ought to be canonically isomorphic
to Tor®(N, M) for all i. Equivalently, we should be able to compute Tor(M, N)
as the homology of M ®pr N,, where N, is a free resolution of N. This is indeed
the case.

In due time (§§IX.7 and 8) we will prove this and all the other wonderful facts
we have stated in this subsection. For now, we are asking the reader to believe that
the Tor functors can be defined as we have indicated, and the facts reviewed here
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will suffice for simple computations (see for example Exercises 2.15 and 2.17) and
applications.

In fact, we know enough about finitely generated modules over PIDs to get a
preliminary sense of what is involved in proving such general facts. Recall that we
have been able to establish that every finitely generated module M over a PID R
has a free resolution of length 1:

0 — R®M1 —— R®Mo —— N[ —— () .
This property characterizes PIDs (Proposition VI.5.4). If

0 A B C 0

is an exact sequence of R-modules, it is not hard to see that one can produce
‘compatible’ resolutions, in the sense that the rows of the following diagram will be
exact as well as the columns:

0 0 0
0 R®a1 RO —— RO —— ()
« Jé3 ol
0 R®ao ROb0 —— R®co —— ()
0 A B C 0
0 0 0

(This will be proven in gory detail in §IX.7.) Tensor the two ‘free’ rows by N; they
remain exact (tensoring commutes with direct sums):

0 N©Sa NOb — O —— ()
la®N J/ﬁ@N l’Y@N
0 N ©ao N@bo — N®0 —— ()

Now the columuns (preceded and followed by 0) are precisely the complexes Ag ®@r N,
Be ®r N, Co ®r N whose homology ‘computes’ the Tor modules. Applying the
snake lemma (Lemma II1.7.8; c¢f. Remark II1.7.10) gives the exact sequence

0—— Hi(Ae ®g N) —— H1(Be ®g N) —— H1(Co ®r N)
; D
Hy(Ay ®r N) —— Hy(By @ N) — Hy(Cy @ N) —— 0,
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which is precisely the sequence of Tor modules conjured up above,

0 — Tor{(A, N) — Torf(B, N) — Tor(C, N) >

0
ARp N—— B®r N ——— C®®r N ——0

with a 0 on the left for good measure (due to the fact that Tord vanishes if R is a
PID; cf. Exercise 2.17).

Note that Toric vanishes for i > 0 if k is a field, as vector spaces are flat,
and Tor® vanishes for i > 1 if R is a PID (Exercise 2.17). These facts are not
surprising, in view of the procedure described above for computing Tor and of the
considerations at the end of §VI.5.2: a bound on the length of free resolutions for
modules over a ring R will imply a bound on nonzero Tor’s. For particularly nice
rings (such as the rings corresponding to ‘smooth’ points in algebraic geometry)
this bound agrees with the Krull dimension; but precise results of this sort are
beyond the scope of this book.

.|
Exercises

R denotes a fixed commutative ring.

2.1. > Let M, N be R-modules, and assume that N is cyclic. Prove that every
element of M ®pr N may be written as a pure tensor. [§2.1]

2.2. > Prove ‘by hand’ (that is, without appealing to the right-exactness of tensor)
that Z/nZ &z Z/mZ = 0 if m,n are relatively prime integers. [§2.2]

2.3. Prove that R[z1,...,2,]) g Ry1,. -, Ym] Z R[T1,- -y Tn, Y1s- -y Ym)-
2.4. = Let S, T be commutative R-algebras. Verify the following:

e The tensor product S @z T has an operation of multiplication, defined on pure
tensors by (s1 ® t1) - (S2 ® t2) := 8182 ® t1t2 and making it into a commutative
R-algebra.

e With respect to this structure, there are R-algebra homomorphisms ig : S —
S®@T, resp., ir : T — S®T, defined by ig(s) :==s®1, ir(t) :=1®¢t.

e The R-algebra S®p T, with these two structure homomorphisms, is a coproduct
of S and T in the category of commutative R-algebras: if U is a commutative
R-algebra and fg : S — U, fr : T — U are R-algebra homomorphisms, then
there exists a unique R-algebra homomorphism fg ® fr making the following
diagram commute:

fs

&
fs®fr

SQrT ———=U

TM

fr
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In particular, if S and T are simply commutative rings, then S ®z T is a coproduct
of S and T in the category of commutative rings. This settles an issue left open at
the end of §I11.2.4. [2.10]

2.5. > (Cf. Exercises V.4.7 and V.4.8.) Let S be a multiplicative subset of R, and
let M be an R-module. Prove that S™'M =2 M @ SR as R-modules. (Use the
universal property of the tensor product.)

Through this isomorphism, M ®z S™!R inherits an S~!'R-module structure.
[62.2, 2.8, 2.12, 3.4]

2.6. — (Cf. Exercises V.4.7 and V.4.8.) Let S be a multiplicative subset of R, and
let M be an R-module.

e Let N be an S~!R-module. Prove that (S™!M)®g-15 N =2 M ®@x N.

e Let A be an R-module. Prove that (S™1A) @ M =2 S~ YA ®r M).

(Both can be done ‘by hand’, by analyzing the construction in Lemma 2.3. For
example, there is a homomorphism M @z N — (S71M)®g-15 N which is surjective
because, with evident notation, * ®n =m® % in (S7IM)®g-1x N; checking that
it is injective amounts to easy manipulation of the relations defining the two tensor
products.

Both isomorphisms will be easy consequences of the associativity of tensor
products; cf. Exercise 3.4.) [2.21, 3.4]

2.7. Changing the base ring in a tensor may or may not make a difference:

e Prove that Q ®7 Q = Q ®q Q.
e Prove that C ®g C 22 C ®@¢ C.
2.8. Let R be an integral domain, with field of fractions K, and let M be a finitely
generated R-module. The tensor product V := M ®pr K is a K-vector space

(Exercise 2.5). Prove that dimg V equals the rank of M as an R-module, in the
sense of Definition VI.5.5.

2.9. Let G be a finitely generated abelian group of rank r. Prove that G®zQ = Q".
Prove that for infinitely many primes p, G ®z (Z/pZ) = (Z/pZ)".

2.10. Let k C k(«) = F be a finite simple field extension. Note that F'®; F has a
natural ring structure; cf. Exercise 2.4.

e Prove that « is separable over k if and only if F' ®; F' is reduced as a ring.
e Prove that k C F is Galois if and only if F ®, F is isomorphic to FIF# as a
ring.

(Use Corollary 2.8 to ‘compute’ the tensor. The CRT from §V.6.1 will likely be
helpful.)

2.11. > Complete the proof of Lemma 2.4. [§2.2]

2.12. Let S be a multiplicative subset of R (cf. Exercise V.4.7). Prove that S~'R
is flat over R. (Hint: Exercises 2.5 and 1.25.)

2.13. Prove that direct sums of flat modules are flat.
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2.14. > Prove that, according to the definition given in §2.4, Tor{ (M, N) is iso-
morphic to M @ N. [§2.4]

2.15. > Prove that for » € R a non-zero-divisor and N an R-module, the module
Torf'(R/(r), N) is isomorphic to the r-torsion of N, that is, the submodule of
elements n € N such that rn = 0 (cf. §VL.4.1). (This is the reason why Tor is
called Tor.) [§2.4, 6.21]

2.16. Let I, J be ideals of R. Prove that Tort(R/I,R/J) = (IN.J)/I.J. (For exam-
ple, this Tor! vanishes if I+.J = R, by Lemma V.6.2.) Prove that Tor!*(R/I, R/.J)
is isomorphic to Tor’* (I, R/.J) for i > 1.

2.17. > Let M, N be modules over a PID R. Prove that Tor!*(M, N) = 0 for i > 2.
(Assume M, N are finitely generated, for simplicity.) [§2.4]

2.18. Let R be an integral domain. Prove that a cyclic R-module is flat if and only
if it is free.

2.19. — The following criterion is quite useful.

e Prove that an R-module M is flat if and only if every monomorphism of R-
modules A — B induces a monomorphism of R-modules A®r M — B®pr M.

e Prove that it suffices to verify this condition for all finitely generated modules B.
(Hint: For once, refer back to the construction of tensor products given in
Lemma 2.3. An element ), a; ® m; € A®pr M goes to zero in B ®g M if the
corresponding element ). (a;, m;) equals a combination of the relations defining
B ®r M in the free R-module F®(B x M). This will be an identity involving
only finitely many elements of B; hence....)

e Prove that it suffices to verify this condition when B = R and A = I is an ideal
of R. (Hint: We may now assume that B is finitely generated. Find submodules
B; such that A =By C B; C --- C B, = B, with each B;/B;_; cyclic. Reduce
to verifying that A ® g M injects in B ®g M when B/A is cyclic, hence = R/T
for some ideal I. Conclude by a Torf argument or—but this requires a little
more stamina—by judicious use of the snake lemma.)

e Deduce that an R-module M is flat if and only if the natural homomorphism
I ®r M — IM is an isomorphism for every ideal I of R.

If you believe in Tor’s, now you can also show that an R-module M is flat if and
only if Torf(R/I, M) = 0 for all ideals I of R. [2.20]

2.20. Let R be a PID. Prove that an R-module M is flat if and only if it is torsion-
free. (If M is finitely generated, the classification theorem of §VI.5.3 makes this
particularly easy. Otherwise, use Exercise 2.19.)

Geometrically, this says roughly that an algebraic set fails to be ‘flat’ over a
nonsingular curve if and only if some component of the set is contracted to a point.
This phenomenon is displayed in the picture in Example 2.14.

2.21. - (Cf. Exercise V.4.11.) Prove that flatness is a local property: an R-module
M is flat if and only if M, is a flat Ry-module for all prime ideals p, if and only if
M, is a flat Ryy-module for all maximal ideals m. (Hint: Use Exercises 1.25 and 2.6.
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The = direction will be straightforward. For the converse, let A C B be R-
modules, and let K be the kernel of the induced homomorphism AQrM — BRgrM.
Prove that the kernel of the localized homomorphism Ay, @p, My — Bn ®r,, Mn
is isomorphic to Ky, and use Exercise V.4.12.) [2.22]

2.22. - Let M, N be R-modules, and let S be a multiplicative subset of R. Use the
definition of Tor given in §2.4 to show S~ Tor®(M, N) = Tor®  ®(S~1M,S—1N).
(Use Exercise 1.25.) Use this fact to give a leaner proof that flatness is a local
property (Exercise 2.21). [2.25]

2.23. > Let

0 M N P 0

be an exact sequence of R-modules, and assume that P is flat.
e Prove that M is flat if and only if N is flat.
e Prove that for all R-modules @, the induced sequence
00— MOrQ —"+NQRRQ —PRrQ——0
is exact.

[2.24, §5.4]

2.24. - Let R be a commutative Noetherian local ring with (single) maximal
ideal m, and let M be a finitely generated flat R-module.

e Choose elements my,...,m, € M whose cosets mod mM are a basis of M/mM
as a vector space over the field R/m. By Nakayama’s lemma, M = (m,...,m,.)
(Exercise VI.3.10).

e Obtain an exact sequence

0 N R®T M 0,

where N is finitely generated.
e Prove that this sequence induces an exact sequence
0 —— N/mN —— (R/m)®" —— M/mM —— 0.

(Use Exercise 2.23.)
e Deduce that N = 0. (Nakayama.)
e Conclude that M is free.

Thus, a finitely generated module over a (Noetherian'!) local ring is flat if and only
if it is free. Compare with Exercise VI.5.5. [2.25, 6.8, 6.12]

2.25. Let R be a commutative Noetherian ring, and let M be a finitely generated
R-module. Prove that

M is flat <= Tori'(M, R/m) = 0 for every maximal ideal m of R .

11 The Noetherian hypothesis is actually unnecessary, but it simplifies the proof by allowing
the use of Nakayama’s lemma.
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(Use Exercise 2.21, and refine the argument you used in Exercise 2.24; remem-
ber that Tor localizes, by Exercise 2.22. The Noetherian hypothesis is actually
unnecessary, but the proofs are harder without it.)

3. Base change

We have championed several times the viewpoint that deep properties of a ring R
are encoded in the category R-Mod of R-modules; one extreme position is to simply
replace R with R-Mod as the main object of study. The question then arises as to
how to deal with ring homomorphisms from this point of view, or more generally
how the categories R-Mod, S-Mod of modules over two (commutative) rings R,
S may relate to each other. The reader should expect this to happen by way of
functors between the two categories and that the situation at the categorical level
will be substantially richer than at the ring level.

3.1. Balanced maps. Before we can survey the basic definitions, we must up-
grade our understanding of tensor products. It turns out that M ®p N satisfies a
more encompassing universal property than the one examined in §2.1. Let M, N
be modules over a commutative ring R, as in §2.1, and let G be an abelian group,
i.e., a Z-module.

Definition 3.1. A Z-bilinear map ¢ : M x N — G is R-balanced if Vm € M,
Vn € N, Vr € R,
p(rm,n) = @(m,rn). J

If G is an R-module and ¢ : M x N — G is R-bilinear, then it is R-balanced!?.
But in general the notion of ‘R-balanced’ appears to be quite a bit more general,
since G is not even required to be an R-module. This may lead the reader to
suspect that a solution to the universal problem of factoring balanced maps may
be a different gadget than the ‘ordinary’ tensor product, but we are in luck in this
case, and the ordinary tensor product does the universal job for balanced maps as
well.

To understand this, recall that we constructed M ®z N as a quotient

REB(MX N)
M®r N = K
where K is generated by the relations necessary to imply that the map
RO(MxN)

M x N — ROMXN) _,

is R-bilinear. We have observed that every element of M ®p N may be written as
a linear combination of pure tensors:

E mi & ng;
i

12A150 note that if R is not commutative and M, resp., N, carries a right-, resp., left-, R
module structure, then the notion of ‘balanced map’ makes sense. This leads to the definition of
tensor (as an abelian group) in the noncommutative case.
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it follows that the group homomorphism

defined on generators by (m,n) — m®n is surjective; its kernel K p consists of the
combinations

Z(mi,ni) € 78 MxN)  gqch that Z(mi,ni) €K,

where the sum on the right is viewed in R®(M*N) " The reader will verify (Exer-
cise 3.1) that Kp is generated by elements of the form

(m,n1 +ng) — (m,ny) — (M, na),

(ml +m2,n) - (mlan) - (mZan)a

(rm,n) — (m,rn)

(with m,my1,ma € M, n,n1,ne € N, r € R). Therefore, we have an induced
isomorphism of abelian groups
. Z@(MXN) REB(MXN)
@ e

which amounts to an alternative description of M ®r N. The point of this obser-
vation is that the group on the left-hand side of (*) is manifestly a solution to the
universal problem of factoring Z-bilinear, R-balanced maps. Therefore, we have
proved

Lemma 3.2. Let R be a commutative ring; let M, N be R-modules, and let G be
an abelian group. Then every Z-bilinear, R-balanced map ¢ : M x N — G factors
through M @ N ; that is, there exists a unique group homomorphism® : M @r N —
G such that the diagram

MXNL)G

| =

M®r N

commutes.

The universal property explored in §2.1 is recovered as the statement that if
G is an R-module and ¢ is R-bilinear, then the induced group homomorphism
M ®r N — G is in fact an R-linear map.

Remark 3.3. Balanced maps ¢ : M X N — G may be defined as soon as M is a
right-R-module and N is a left- R-module, even if R is not commutative: require
o(mr,n) = @(m,rn) for all m € M, n € N, r € R. The abelian group defined
by the left-hand side of (*) still makes sense and is taken as the definition of the
tensor product M ®p N; but note that this does not carry an R-module structure
in general. This structure is recovered if, e.g., M is a two-sided R-module. a
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3.2. Bimodules; adjunction again. The enhanced universal property for the
tensor will allow us to upgrade the adjunction formula given in Lemma 2.4. This
requires the introduction of yet another notion.

Definition 3.4. Let R, S be two commutative!? rings. An (R, S)-bimodule is an
abelian group N endowed with compatible R-module and S-module structures, in
the sense that Vn € N, Vr € R, Vs € S,

r(sn) = s(rn). a

For example, as R is commutative, every R-module N is an (R, R)-bimodule:
Vri,ro € R and Vn € N,

ri(ron) = (rire)n = (reri)n = ro(rin).

If M is an R-module and N is an (R, S)-bimodule, then the tensor product
M ®pr N acquires an S-module structure: define the action of s € S on pure tensors
m @ n by
s(m®mn) :=m®e (sn),
and extend to all tensors by linearity. In fact, this gives M@z N an (R, S)-bimodule
structure.

Similarly, if N is an (R, S)-bimodule and P is an S-module, then the abelian
group Homg (N, P) is an (R, S)-bimodule: the R-module structure is defined by
setting (ra)(n) = a(rn) for all r € R, n € N, and o € Homg(N, P).

This mess is needed to even make sense of the promised upgrade of adjunction.
As with most such results, the proof is not difficult once one understands what the
statement says.

Lemma 3.5. Suppose M is an R-module, N is an (R, S)-bimodule, and P is an
S-module. Then there is a canonical isomorphism of abelian groups

HomR(M, HOHls(]\/v7 P)) = HomS(M ®r N, P)

Proof. Every element o € Hompg (M, Homg(N, P)) determines a map
p: M XN — P,
via p(m,_) := a(m); @ is clearly Z-bilinear. Further, for all » € R, m € M, n € N:

p(rm,n) = a(rm)(n) = ra(m)(n) = a(m)(rn) = ¢(m, rn),

where = holds by the R-linearity of o and 2 holds by the definition of the R-
module structure on Homg (N, P). Thus ¢ is R-balanced. By Lemma 3.2, such a
map determines (and is determined by) a homomorphism of abelian groups

P:M®rN — P,

130nce more, the noncommutative case would be very worthwhile pursuing, but (not without
misgivings) we have decided otherwise. In this more general case one requires N to be both a
left-R-module and a right-S-module with the compatibility expressed by (rn)s = r(ns) for all
choices of n € N, r € R, s € S. This type of bookkeeping is precisely what is needed in order to
extend the theory to the noncommutative case.
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such that o(m,n) = @(m ® n). We claim that $ is S-linear. Indeed, Vs € S and
for all pure tensors m ® n,

@(s(m®@n)) =p(m & (sn)) = p(m, sn) = a(m)(sn) = sa(m)(n) = sp(m,n)
= S@(m ® TL),
where we have used the S-linearity of o(m). Thus,

(RS HOms(M XRnr N,P).

Tracing the argument backwards, every element of Homg(M ®pz N, P) deter-
mines an element of Hompg(M,Homg (N, P)), and these two correspondences are
clearly inverses of each other. O

If R =S, we recover the adjunction formula of Lemma 2.4; note that in this
case the isomorphism is clearly R-linear.

3.3. Restriction and extension of scalars. Coming back to the theme men-
tioned at the beginning of this section, consider the case in which we have a ho-
momorphism [ : R — S of (commutative) rings. It is natural to look for functors
between the categories R-Mod and S-Mod of modules over R, S, respectively. There
is a rather simple-minded functor from S-Mod to R-Mod (‘restriction of scalars’),
while tensor products allow us to define a functor from R-Mod to S-Mod (‘exten-
sion of scalars’). A third important functor R-Mod — S-Mod may be defined, also
‘extending scalars’, but for which we do not know a good name.

Restriction of scalars. Let f: R — S be a ring homomorphism, and let N be
an S-module. Recall (§II1.5.1) that this means that we have chosen an action of
the ring S on the abelian group N, that is, a ring homomorphism

oS — Endap(N).
Composing with f,
oof:R— S — Endap(N)
defines an action of R on the abelian group N, and hence an R-module structure
on N.

(Even) more explicitly, if » € R and n € N, define the action of r on n by
setting
rn = f(r)n.
Since S is commutative, this defines in fact an (R, S)-bimodule structure on N.
Further, S-linear homomorphisms are in particular R-linear; this assignment is
(covariantly) functorial S-Mod — R-Mod.

If f is injective, so that R may be viewed as a subring of .S, then all we are doing
is viewing N as a module on a ‘restricted’ range of scalars, hence the terminology.
For example, this is how we view a complex vector space as a real vector space, in
the simplest possible way.

We will denote by f, this functor S-Mod — R-Mod induced from f by restric-
tion of scalars. Note that f, is trivially exact, because the kernels and images of a
homomorphism of modules are the same regardless of the base ring. In view of the
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considerations in Example 1.18, this hints that f. may have both a left-adjoint and
a right-adjoint functor, and this will be precisely the case (Proposition 3.6).

Extension of scalars is defined from R-Mod to S-Mod, by associating to an R-
module M the tensor product f*(M) := M ®g S, which (as we have seen in §3.2)
carries naturally an S-module structure. This association is evidently covariantly
functorial. If

R®P - R 5 M -0
is a presentation of M (cf. §VI.4.2), tensoring by S gives (by the right-exactness of
tensor) a presentation of f*(M):
SOB _, 894 L M @r S — 0.
Intuitively, this says that f*(M) is the module defined by ‘the same generators and
relations’ as M, but with coefficients in S.

The third functor, denoted f', also acts from R-Mod to S-Mod and is yet
another natural way to combine the ingredients we have at our disposal: if M is an
R-module, we have pointed out'# in §3.2 that

(M) := Hompg(S, M)

may be given a natural S-module structure (by setting sa(s’) := «a(ss’)). This is
again evidently a covariantly functorial prescription.

Proposition 3.6. Let f : R — S be a homomorphism of commutative rings. Then,
with notation as above, f, is right-adjoint to f* and left-adjoint to f'. In particular,
fs is exact, f* is right-exact, and f' is left-exact.

Proof. Let M, resp., N, be an R-module, resp., an S-module. Note that, trivially,
Homg (S, N) is canonically isomorphic to N (as an S-module) and to f.(N) (as an
R-module). Thus'®
Hompg (M, f.(N)) = Homg(M,Homg(S, N))
>~ Homg(M ®@p S, N) = Homg(f* (M), N)

where we have used Lemma 3.5. These bijections are canonical'®, proving that f*
is left-adjoint to f,.

Similarly, there is a canonical isomorphism N =2 N ®g S (Example 2.2); thus
N ®g S = f.(N) as R-modules, and for every R-module M

Hompg(f.(N), M) = Hompg(N ®s S, M)
=~ Homg (N, Homg(S, M)) = Homg(N, f'(M))

again by Lemma 3.5. This shows that f' is right-adjoint to f,., concluding the
proof. O

14The roles of R and S were reversed in §3.2.

15T hese are isomorphisms of abelian groups, and in fact isomorphisms of R-modules if one
applies f« to the Homg terms.

16The reader should check this. . . .
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Remark 3.7 (Warning). Our choice of notation, f,, etc., is somewhat nonstandard,
and the reader should not take it too literally. It is inspired by analogs in the
context of sheaf theory over schemes, but some of the properties reviewed above
require crucial adjustments in that wider context: for example f, is not exact as a
sheaf operation on schemes. a

Exercises

In the following exercises, R, S denote commutative rings.

3.1. > Verify that a combination of pure tensors ), (m; ® n;) is zero in the tensor
product M ®@x N if and only if Y, (m;, n;) € ZEM*N) is a combination of elements
of the form

(manl + nQ) - (mvnl) - (m; nQ)a

(m1 +ma,n) — (m1,n) — (m2,n),

(rm,n) — (m,rn),

with m,my,mg € M, n,ny,ne € N, r € R. [§3.1]
3.2. If f: R — S is a ring homomorphism and M, N are S-modules (hence R-

modules by restriction of scalars), prove that there is a canonical homomorphism
of R-modules M g N — M ®g N.

3.3. > Let R, S be commutative rings, and let M be an R-module, N an (R, S)-
bimodule, and P as S-module. Prove that there is an isomorphism of R-modules

M ®r (N®gP)=(M®rN)®g P.
In this sense, ® is ‘associative’. [3.4, §4.1]

3.4. > Use the associativity of the tensor product (Exercise 3.3) to prove again the
formulas given in Exercise 2.6. (Use Exercise 2.5.) [2.6]

3.5. Let f: R — S be a ring homomorphism. Prove that f' commutes with limits,
f* commutes with colimits, and f, commutes with both. In particular, deduce that
these three functors all preserve finite direct sums.

3.6. Let f: R — S be a ring homomorphism, and let ¢ : Ny — Ny be a homo-
morphism of S-modules. Prove that ¢ is an isomorphism if and only if f,.(p) is an
isomorphism. (Functors with this property are said to be conservative.) In fact,
prove that f. is faithfully exact: a sequence of S-modules

0 L M N 0

is exact if and only if the sequence of R-modules

0 fe(L) fe(M) —— fo(N) ——0

is exact. In particular, a sequence of R-modules is exact if and only if it is exact as
a sequence of abelian groups. (This is completely trivial but useful nonetheless.)
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3.7. Let i : £ C F be a finite field extension, and let W be an F-vector space of
finite dimension n. Compute the dimension of i, (W) as a k-vector space (where i,
is restriction of scalars; cf. §3.3).

3.8. Let i : K C F be a finite field extension, and let V' be a k-vector space of
dimension n. Compute the dimension of (V) and '(V') as F-vector spaces.

3.9. Let f: R — S be a ring homomorphism, and let M be an R-module. Prove
that the extension f*(M) satisfies the following universal property: if N is an S-
module and ¢ : M — N is an R-linear map, then there exists a unique S-linear
map ¢ : f*(M) — S making the diagram

M—25 N

| <
(M)

commute, where ¢ : M — f*(M) = M®pgS is defined by m — m®1. (Thus, f*(M)
is the ‘best approximation’ to the R-module M in the category of S-modules.)

3.10. Prove the following projection formula: if f : R — S'is a ring homomorphism,
M is an R-module, and N is an S-module, then f.(f*(M)®s N) = M ®pr f.(N)
as R-modules.

3.11. Let f : R — S be a ring homomorphism, and let M be a flat R-module.
Prove that f*(M) is a flat S-module.

3.12. In ‘geometric’ contexts (such as the one hinted at in Remark 3.7), one would
actually work with categories which are opposite to the category of commutative
rings; cf. Example 1.9. A ring homomorphism f : R — S corresponds to a morphism
f°:5° — R° in the opposite category, and we can simply define f°,, etc., to be
[+, etc.

For morphisms f°:S° — R° and ¢g° : T° — S° in the opposite category, prove
that

o (f7og°) =g o[,

° (fo Ogo)! o~ go! ofo!’

where = stands for ‘naturally isomorphic’. (These are the formulas suggested by
the notation: a * in the subscript invariably suggests a basic ‘covariance’ property

of the notation, while modifiers in the superscript usually suggest contravariance.
The switch to the opposite category is natural in the algebro-geometric context.)

3.13. Let p > 0 be a prime integer, and let 7 : Z — Z/pZ be the natural projection.
Compute 7*(A) and 7'(A) for all finitely generated abelian groups A, as a vector
space over Z/pZ. Compute t*(A) and ¢'(A) for all finitely generated abelian groups
A, where ¢ : Z — Q is the natural inclusion.

3.14. Let f : R — S be an onto ring homomorphism; thus, S = R/I for some ideal
I of R.
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e Prove that, for all R-modules M, f'(M) = {m € M |Va € I, am = 0}, while
(M) = M/IM. (Exercise II1.7.7 may help.)

e Prove that, for all S-modules N, f'f,(N) = N and f*f.(N) = N.
e Prove that f, is fully faithful (Definition 1.6).

e Deduce that if there is an onto homomorphism R — S, then S-Mod is equivalent
to a full subcategory of R-Mod.

3.15. Let f : R — S be a ring homomorphism, and assume that the functor
fx 1 S-Mod — R-Mod is an equivalence of categories.

e Prove that there is a homomorphism of rings g : S — Endap(R) such that the
composition R — S — Endap(R) is the homomorphism realizing R as a module
over itself (that is, the homomorphism studied in Proposition II1.2.7).

e Use the fact that S is commutative to deduce that g(9S) is isomorphic to R.
(Refine the result of Exercise I11.2.17.) Deduce that f has a left-inverse g : S —
R.

e Therefore, f. o g, is naturally isomorphic to the identity; in particular, f, o
g+(S) =2 S as an R-module. Prove that this implies that g is injective. (If
a € ker g, prove that a is in the annihilator of f, o g.(.5).)

e Conclude that f is an isomorphism.

Two rings are Morita equivalent if their category of left-modules are equivalent.
The result of this exercise is a (very) particular case of the fact that two commutative
rings are Morita equivalent if and only if they are isomorphic. The commutativity
is crucial in this statement: for example, it can be shown that any ring R is Morita
equivalent to the ring of matrices'” M, o (R), for all n > 0.

4. Multilinear algebra

4.1. Multilinear, symmetric, alternating maps. Multilinear maps may be
defined similarly to bilinear maps: if My, ..., My, P are R-modules, a function

@:Mlx-~-><M¢—>P

is R-multilinear if it is R-linear in each factor, that is, if the function obtained
by arbitrarily fixing all but the ¢-th component is R-linear in the i-th factor, for
1=1,...,r.

Again it is natural to ask whether R-multilinear maps may be turned into R-
linear maps: whether there exists an R-module M; ®p --- ® g My through which
every R-multilinear map must factor. Luckily, this module is already available to
us:

Claim 4.1. Every R-multilinear map My X --- X My — P factors uniquely through
(- (M) ®@p M2) @p -+ ) ®r My—1) @p Mp.

17The author was once told that M.n(C) is ‘not seriously noncommutative’ since it is Morita
equivalent to C, which is commutative.



