
Chapter 7

The Central Limit
Theorem

Experimentalists think that it is a mathematical theorem, while the mathematicians believe
it to be an experimental fact.

–Gabriel Lippman, in a discussion with J. H. Poincaré about the CLT

Let Sn denote the total number of successes in n independent Bernoulli
trials, where the probability of success per trial is some fixed number p ∈
(0 , 1). The De Moivre–Laplace central limit theorem (p. 19) asserts that for
all real numbers a < b,

(7.1) lim
n→∞

P

{
a <

Sn − np√
np(1 − p)

≤ b

}
=
∫ b

a

e−x2/2

√
2π

dx.

We will soon see that (7.1) implies that the distribution of Sn is close to that
of N(np ,

√
np(1 − p)); see Example 7.3 below. In this chapter we discuss

the definitive formulation of this theorem. Its statement involves the notion
of weak convergence which we discuss next.

1. Weak Convergence

Definition 7.1. Let X denote a topological space, and suppose µ, µ1, µ2, . . .
are probability (or more generally, finite) measures on (X ,B(X)). We say
that µn converges weakly to µ, and write µn ⇒ µ, if

(7.2) lim
n→∞

∫
f dµn =

∫
f dµ,

91



92 7. The Central Limit Theorem

for all bounded continuous functions f : X → R. If the respective distribu-
tions of Xn and X are µn and µ, and if µn ⇒ µ, then we also say that Xn

converges weakly to X and write Xn ⇒ X. This is equivalent to saying that

(7.3) lim
n→∞

Ef(Xn) = Ef(X),

for all bounded continuous functions f : X → R.

The following result of Lévy (1937) characterizes weak convergence on
R.

Theorem 7.2. Let µ, µ1, µ2, . . . denote probability measures on (R ,B(R))
with respective distibution functions F, F1, F2, . . . . Then, µn ⇒ µ if and
only if

(7.4) lim
n→∞

Fn(x) = F (x),

for all x ∈ R at which F is continuous.

Equivalently, Xn ⇒ X if and only if P{Xn ≤ x} → P{X ≤ x} for all x
such that P{X = x} = 0.

Example 7.3. Consider the De Moivre–Laplace central limit theorem, and
define

(7.5) Xn :=
Sn − np√
np(1 − p)

.

Let Fn denote the distribution function of Xn, and F the distribution func-
tion of N(0 , 1). Observe that: (i) F is continuous; and (ii) (7.1) asserts that
limn→∞(Fn(b) − Fn(a)) = F (b) − F (a). By the preceding theorem, (7.1) is
saying that Xn ⇒ N(0 , 1).

Theorem 7.2 cannot be improved. Indeed, it can happen that Xn ⇒
X but Fn fails to converge to F pointwise. Next is an example of this
phenomenon.

Example 7.4. First let X = ±1 with probability 1
2 each. Then define

(7.6) Xn(ω) :=

{
−1 if X(ω) = −1,

1 + 1
n if X(ω) = 1.

Then, limn→∞ f(Xn) = f(X) for all bounded continuous functions f , whence
Ef(Xn) → Ef(X). However, Fn(1) = P{Xn ≤ 1} = 1

2 does not converge to
F (1) = P{X ≤ 1} = 1.

In order to prove Theorem 7.2 we will need the following.

Lemma 7.5. The set J := {x ∈ R : P{X = x} > 0} is denumerable.
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Proof. Define

(7.7) Jn :=
{

x ∈ R : P{X = x} ≥ 1
n

}
.

Since J = ∪∞
n=1Jn, it suffices to prove that Jn is finite. Indeed, if Jn were

infinite, then we could select a countable set Kn ⊂ Jn, and observe that

(7.8) 1 ≥
∑

x∈Kn

P{X = x} ≥ |Kn|
n

,

where | · · · | denotes cardinality. This contradicts the assumption that Kn is
infinite. �

Proof of Theorem 7.2. Throughout, we let Xn denote a random variable
whose distribution is µn (n = 1, 2, . . .), and X a random variable with
distribution µ.

Suppose first that Xn ⇒ X. For all fixed x ∈ R and ε > 0, we can find
a bounded continuous function f : R → R such that

(7.9) f(y) ≤ 1(−∞,x](y) ≤ f(y − ε) ∀y ∈ R.

[Try a piecewise-linear function f .] It follows that

(7.10) Ef(Xn) ≤ Fn(x) ≤ Ef(Xn − ε).

Let n → ∞ to obtain

(7.11) Ef(X) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ Ef(X − ε).

Equation (7.9) is equivalent to the following:

(7.12) 1(−∞,x−ε](y) ≤ f(y) and f(y − ε) ≤ 1(−∞,x+ε](y).

We apply this with y := X and take expectations to see that

(7.13) F (x − ε) ≤ Ef(X) and Ef(X − ε) ≤ F (x + ε).

This and (7.11) together imply that

(7.14) F (x − ε) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x + ε).

Let ε ↓ 0 to deduce that Fn(x) → F (x) whenever F is continuous at x.
For the converse we suppose that Fn(x) → F (x) for all continuity points

x of F . Our goal is to prove that limn→∞ Ef(Xn) = Ef(X) for all bounded
continuous functions f : R → R.

In accord with Lemma 7.5, for any δ,N > 0, we can find real numbers
· · · < x−2 < x−1 < x0 < x1 < x2 < · · · (depending only on δ and N)
such that: (i) max|i|≤N supy∈(xi,xi+1] |f(y) − f(xi)| ≤ δ; (ii) F is continuous
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at xi for all i ∈ Z; and (iii) F (xN+1) ≥ 1 − δ and F (x−N ) ≤ δ. Let
ΛN := (x−N , xN+1]. By (i),∣∣∣∣∣∣E [f(Xn); Xn ∈ ΛN ] −

N∑
j=−N

f(xj) [Fn(xj+1) − Fn(xj)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑

j=−N

E {f(Xn) − f(xj); Xn ∈ (xj , xj+1]}

∣∣∣∣∣∣
≤

N∑
j=−N

E {|f(Xn) − f(xj)| ; Xn ∈ (xj , xj+1]}

≤ δ.

(7.15)

This remains valid if we replace Xn and Fn respectively by X and F . Note
that N is held fixed, and Fn converges to F at all continuity-points of F .
Therefore, as n → ∞,

(7.16)
∑
|j|≤N

f(xj) [Fn(xj+1) − Fn(xj)] →
∑
|j|≤N

f(xj) [F (xj+1) − F (xj)] .

By the triangle inequality,

(7.17) lim sup
n→∞

|E {f(Xn); Xn ∈ ΛN} − E {f(X); X ∈ ΛN}| ≤ 2δ.

For the remainder terms, first note that

(7.18) P {Xn �∈ ΛN} = 1 − Fn (xN+1) + Fn (xN ) ≤ 2δ.

Let N → ∞ to find that the same quantity bounds P{X �∈ ΛN}. Therefore,
if we let K := supy∈R |f(y)|, then

(7.19) lim sup
n→∞

E {|f(Xn)|; Xn �∈ ΛN} + E {|f(X)|; X �∈ ΛN} ≤ 4Kδ.

In conjunction with (7.17), this proves that

(7.20) lim sup
n→∞

|Ef(Xn) − Ef(X)| ≤ 2δ + 4Kδ.

Let δ tend to zero to finish. �

2. Weak Convergence and Compact-Support Functions

Definition 7.6. If X is a metric space, then Cc(X) denotes the collection
of all continuous functions f : X → R such that f has compact support ;
i.e., there exists a compact set K such that f(x) = 0 for all x �∈ K. In
addition, Cb(X) denotes the collection of all bounded continuous functions
f : X → R.
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Recall that in order to prove that µn ⇒ µ, we need to verify that∫
f dµn →

∫
f dµ for all f ∈ Cb(X). Since Cc(Rk) ⊆ Cb(Rk), the next

result simplifies our task in the case that X = Rk.

Theorem 7.7. If µ, µ1, µ2, . . . are probability measures on (Rk,B(Rk)),
then µn ⇒ µ if and only if

(7.21) lim
n→∞

∫
f dµn =

∫
f dµ ∀f ∈ Cc(Rk).

Proof. We plan to prove that if
∫

g dµn →
∫

g dµ for all g ∈ Cc(Rk), then∫
f dµn →

∫
f dµ for all f ∈ Cb(Rk). With this goal in mind, let us choose

and fix such an f ∈ Cb(Rk). By considering f+ and f− separately, we
can—and will—assume without loss of generality that f(x) ≥ 0 for all x.

Step 1. The Lower Bound. For any p > 0 choose and fix a function
fp ∈ Cc(Rk) such that:

(1) For all x ∈ [−p , p]k, fp(x) = f(x).

(2) For all x �∈ [−p − 1 , p + 1]k, fp(x) = 0.

(3) For all x ∈ Rk, 0 ≤ fp(x) ≤ f(x), and fp(x) ↑ f(x) as p ↑ ∞.

It follows that

(7.22) lim inf
n→∞

∫
f dµn ≥ lim

n→∞

∫
fp dµn =

∫
fp dµ.

Let p ↑ ∞ and apply the dominated convergence theorem to deduce that

(7.23) lim inf
n→∞

∫
f dµn ≥

∫
f dµ.

This proves half of the theorem.
Step 2. A Variant. In this step we prove that, in (7.23), f can be re-

placed by the indicator function of an open k-dimensional hypercube. More
precisely, given any real numbers a1 < b1, . . . , ak < bk,

(7.24) lim inf
n→∞

µn ((a1 , b1) × · · · × (ak , bk)) ≥ µ ((a1 , b1) × · · · × (ak , bk)) .

To prove this, we first find continuous functions ψm ↑ 1(a1,b1)×···×(ak,bk),
pointwise. By definition, ψm ∈ Cc(Rk) for all m ≥ 1, and

(7.25) lim inf
n→∞

µn ((a1 , b1) × · · · × (ak , bk)) ≥ lim
n→∞

∫
ψm dµn =

∫
ψm dµ.

Let m ↑ ∞ to deduce (7.24) from the dominated convergence theorem.
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Step 3. The Upper Bound. Recall fp from Step 1 and write∫
f dµn =

∫
[−p,p]k

f dµn +
∫
Rk\[−p,p]k

f dµn

≤
∫

fp dµn + sup
z∈Rk

|f(z)| ·
[
1 − µn

(
[−p , p]k

)]
.

(7.26)

Now let n → ∞ and appeal to (7.24) to find that

(7.27) lim sup
n→∞

∫
f dµn ≤

∫
fp dµ + sup

z∈Rk

|f(z)| ·
[
1 − µ

(
(−p , p)k

)]
.

Let p ↑ ∞ and use the monotone convergence theorem to deduce that

(7.28) lim sup
n→∞

∫
f dµn ≤

∫
f dµ.

This finishes the proof. �

3. Harmonic Analysis in Dimension One

Definition 7.8. The Fourier transform of a probability measure µ on R is

(7.29) µ̂(t) :=
∫ ∞

−∞
eitx µ(dx) ∀t ∈ R,

where i :=
√
−1. This definition continues to makes sense if µ is a finite mea-

sure. It also makes sense if µ is replaced by a Lebesgue-integrable function
f : R → R. In that case, we set

(7.30) f̂(t) :=
∫ ∞

−∞
eixtf(x) dx ∀t ∈ R.

[We identify the Fourier transform of the function f = (dµ/dx) with that of
the measure µ.] If X is a real-valued random variable whose distribution is
some probability measure µ, then µ̂ is also called the characteristic function
of X and/or µ, and µ̂(t) is equal to E exp(itX) = E cos(tX) + iE sin(tX).

Here are some of the elementary properties of characteristic functions.

Lemma 7.9. If µ is a finite measure on (R ,B(R)), then µ̂ exists, is uni-
formly continuous on R, and satisfies the following:

(1) supt∈R |µ̂(t)| = µ̂(0) = µ(R) and µ̂(−t) = µ̂(t).

(2) µ̂ is nonnegative definite. That is,
∑n

j=1

∑n
k=1 µ̂(tj − tk)zjzk ≥ 0

for all z1, . . . , zn ∈ C and t1, . . . , tn ∈ R.

Proof. Without loss of generality, we may assume that µ is a probability
measure. Otherwise we can prove the theorem for the probability measure
ν( · · · ) = µ( · · · )/µ(R), and then multiply through by µ(R).
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Let X be a random variable whose distribution is µ; µ̂(t) = EeitX is
always defined and bounded since |eitX | ≤ 1. To prove uniform continuity,
we note that for all a, b ∈ R,

(7.31)
∣∣∣eia − eib

∣∣∣ = ∣∣∣1 − ei(a−b)
∣∣∣ = ∣∣∣∣∫ a−b

0
eix dx

∣∣∣∣ ≤ |a − b|.

Consequently,

(7.32)
∣∣∣eia − eib

∣∣∣ ≤ |a − b| ∧ 2.

It follows from this that

(7.33) sup
|s−t|≤δ

|µ̂(t) − µ̂(s)| ≤ sup
|s−t|≤δ

E
∣∣eitX − eisX

∣∣ ≤ E (δ|X| ∧ 2) .

Thanks to the dominated convergence theorem, the preceding tends to 0 as
δ converges down to 0. The uniform continuity of µ̂ follows.

Part (1) is elementary. To prove (2) we first observe that

(7.34)
∑∑
1≤j,k≤n

µ̂(tj − tk)zjzk =
∑∑
1≤j,k≤n

Eei(tj−tk)Xzjzk.

This is the expectation of
∣∣∑n

j=1 eitjXzj

∣∣2, and hence is real as well as non-
negative. �

Example 7.10 (§5.1, p. 11). If X = Unif(a , b) for some a < b, then EeitX =
(eitb − eita)/it(b − a) for all t ∈ R.

Example 7.11 (Problem 1.11, p. 13). If X has the exponential distribution
with some parameter λ > 0, then EeitX = λ/(λ − it) for all t ∈ R.

Example 7.12 (§5.2, p. 11). If X = N(µ , σ2) for some µ ∈ R and σ ≥ 0,
then EeitX = exp

(
itµ − 1

2 t2σ2
)

for all t ∈ R.

Example 7.13 (§4.1, p. 8). If X = Bin(n, p) for an integer n ≥ 1 and some
p ∈ [0 , 1], then EeitX = (peit + 1 − p)n for all t ∈ R.

Example 7.14 (Problem 1.9, p. 13). If X = Poiss(λ) for some λ > 0, then
EeitX = exp(−λ + λeit) for all t ∈ R.

4. The Plancherel Theorem

In this section we state and prove a variant of a result of Plancherel (1910,
1933). Roughly speaking, Plancherel’s theorem shows us how to reconstruct
a distribution from its characteristic function. In order to state things more
precisely we need some notation.
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Definition 7.15. Suppose f, g : R → R are measurable. Then, when
defined, the convolution f ∗ g is the function,

(7.35) (f ∗ g)(x) :=
∫ ∞

−∞
f(x − y)g(y) dy.

Convolution is a symmetric operation; i.e., f ∗g = g∗f for all measurable
f, g : R → R. This tacitly implies that one side of the stated identity
converges if and only if the other side does. Next are two less obvious
properties of convolutions. Henceforth, let φε denote the density function of
N(0 , ε2); i.e.,

(7.36) φε(x) =
1

ε
√

2π
exp
(
− x2

2ε2

)
∀x ∈ R.

The first important property of convolutions is that they provide us with
smooth approximations to nice functions.

Fejér’s Theorem. If f ∈ Cc(R), then f ∗ φε is infinitely differentiable for
all ε > 0, and the kth derivative is f ∗ φ

(k)
ε for all k ≥ 1. Moreover,

(7.37) lim
ε→0

sup
x∈R

|(f ∗ φε)(x) − f(x)| = 0.

Proof. Let φ
(0)
ε := φε. Then for all k ≥ 0 and all ε > 0 fixed,(

f ∗ φ
(k)
ε

)
(x + h) −

(
f ∗ φ

(k)
ε

)
(x)

h

=
∫ ∞

−∞
f(y)

φ
(k)
ε (x + h − y) − φ

(k)
ε (x − y)

h
dy.

(7.38)

Because φ
(k+1)
ε is bounded and f has compact support, the bounded con-

vergence theorem implies that f ∗φ
(k)
ε is differentiable, and the derivative is

f ∗ φ
(k+1)
ε . Now we apply induction to find that the kth derivative of f ∗ φε

exists and is equal to f ∗ φ
(k)
ε for all k ≥ 1.

Let Z denote a standard normal random variable, and note that φε is
the density function of εZ; thus, (f ∗ φε)(x) = Ef(x − εZ). By the uniform
continuity of f , limε→0 supx∈R |f(x − εZ) − f(x)| = 0 a.s. Because f is
bounded, this and the bounded convergence theorem together imply the
result. �

The second property of convolutions, alluded to earlier, is the Plancherel
theorem.
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Plancherel’s Theorem. If µ is a finite measure on R and f : R → R is
Lebesgue-integrable, then

(7.39)
∫ ∞

−∞
(f ∗ φε)(x) µ(dx) =

1
2π

∫ ∞

−∞
e−ε2t2/2f̂(t) µ̂(t) dt ∀ε > 0.

Consequently, if f ∈ Cc(R) and f̂ ∈ L1(R), then

(7.40)
∫ ∞

−∞
f dµ =

1
2π

∫ ∞

−∞
f̂(t) µ̂(t) dt.

Proof. By the Fubini–Tonelli theorem,

1
2π

∫ ∞

−∞
e−ε2t2/2f̂(t) µ̂(t) dt

=
1
2π

∫ ∞

−∞
e−ε2t2/2

(∫ ∞

−∞
f(x)eitx dx

)(∫ ∞

−∞
e−ity µ(dy)

)
dt

=
1
2π

∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
e−ε2t2/2eit(x−y) dt

)
µ(dy) f(x) dx.

(7.41)

A direct calculation reveals that∫ ∞

−∞
e−ε2t2/2eit(x−y) dt =

√
2π
ε

exp
(
−(x − y)2

2ε2

)
= 2πφε(x − y).

(7.42)

See Example 7.12. Since f is integrable, all of the integrals in the right-hand
side of (7.41) converge absolutely. Therefore, (7.39) follows from the Fubini–
Tonelli theorem; (7.40) follows from (7.39) and the Fejér theorem. �

The Plancherel theorem is a deep result, and has a number of profound
consequences. We state two of them.

The Uniqueness Theorem. If µ and ν are two finite measures on R and
µ̂ = ν̂, then µ = ν.

Proof. By the theorems of Plancherel and Fejér,
∫

f dµ =
∫

f dν for all
f ∈ Cc(R). Choose fk ∈ Cc(R) such that fk ↓ 1[a,b]. The monotone
convergence theorem then implies that µ([a , b]) = ν([a , b]). Thus, µ and
ν agree on all finite unions of disjoint closed intervals of the form [a , b].
Because the said collection generates B(R), µ = ν on B(R). �

The following convergence theorem of P. Lévy is another significant con-
sequence of the Plancherel theorem.

The Convergence Theorem. Suppose µ, µ1, µ2, . . . are probability mea-
sures on (R ,B(R)). If limn→∞ µ̂n = µ̂ pointwise, then µn ⇒ µ.
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Proof. In accord with Theorem 7.7 it suffices to prove that limn→∞
∫

f dµn =∫
f dµ for all f ∈ Cc(R). Thanks to the Fejér theorem, for all δ > 0 we can

choose ε > 0 such that

(7.43) sup
x∈R

|(f ∗ φε)(x) − f(x)| ≤ δ.

Apply the triangle inequality twice to see that for all δ > 0,∣∣∣∣∫ f dµn −
∫

f dµ

∣∣∣∣ ≤ 2δ +
∣∣∣∣∫ (f ∗ φε) dµn −

∫
(f ∗ φε) dµ

∣∣∣∣
= 2δ +

∣∣∣∣∣
∫ ∞

−∞
f̂(t)e−ε2t2/2

(
µ̂n(t) − µ̂(t)

2π

)
dt

∣∣∣∣∣ .
(7.44)

The last line holds by the Plancherel theorem. Since f ∈ Cc(R), f̂ is
uniformly bounded by

∫∞
−∞ |f(x)| dx < ∞ (Lemma 7.9). Therefore, by the

dominated convergence theorem,

(7.45) lim sup
n→∞

∣∣∣∣∫ f dµn −
∫

f dµ

∣∣∣∣ ≤ 2δ.

The theorem follows because δ > 0 is arbitrary. �

5. The 1-D Central Limit Theorem

We are ready to state and prove the main result of this chapter: The one-
dimensional central limit theorem (CLT). The CLT is generally considered
to be a cornerstone of classical probability theory.

The Central Limit Theorem. Suppose {Xi}∞i=1 are i.i.d., real-valued,
and have two finite moments. If Sn := X1 + · · · + Xn and VarX1 ∈ (0 ,∞),
then

(7.46)
Sn − nEX1√

n
⇒ N(0 , VarX1).

Because nEX1 +
√

nN(0 , VarX1) and N(nEX1 , nVarX1) have the same
distribution, the central limit theorem states that the distribution of Sn is
close to that of N(nEX1 , nVarX1).

Proof. By considering instead X∗
j := (Xj − EX1)/SD(X1) and S∗

n :=∑n
j=1 X∗

j we can assume without loss of generality that the Xj ’s have mean
zero and variance one.

We apply the Taylor expansion with remainder to deduce that for all
x ∈ R,

(7.47) eix = 1 + ix − 1
2
x2 + R(x),



6. Complements to the CLT 101

where |R(x)| ≤ 1
6 |x|3 ≤ |x|3. If |x| ≤ 4, then this is a good estimate, but

when |x| > 4, we can use |R(x)| ≤ |eix|+1+|x|+ 1
2x2 ≤ x2 instead. Combine

terms to obtain the bound:

(7.48) |R(x)| ≤ |x|3 ∧ x2.

Because the Xj ’s are i.i.d., Lemma 6.12 on page 68 implies that

(7.49) EeitSn/
√

n =
n∏

j=1

EeitXj/
√

n.

This and (7.47) together imply that

EeitSn/
√

n =
(

1 + iE
[
tX1√

n

]
− 1

2
E
[
(tX1)2

n

]
+ E

[
R

(
tX1√

n

)])n

=
(

1 − t2

2n
+ E

[
R

(
tX1√

n

)])n

.

(7.50)

By (7.48) and the dominated convergence theorem,

(7.51) n
∣∣E [R (tX1/

√
n
)]∣∣ ≤ E

[
|tX1|3√

n
∧ (tX1)2

]
= o(1) (n → ∞).

By the Taylor expansion ln(1 − z) = −z + o(|z|) as |z| → 0, where “ln”
denotes the principal branch of the logarithm. It follows that

(7.52) lim
n→∞

EeitSn/
√

n = lim
n→∞

(
1 − t2

2n
+ o

(
1
n

))n

= e−t2/2.

The CLT follows from the convergence theorem (p. 99) and Example 7.12
(p. 97). �

6. Complements to the CLT

6.1. The Multidimensional CLT. Now we turn our attention to the
study of random variables in Rd. Throughout, X, X1, X2, . . . are i.i.d. ran-
dom variables that take values in Rd, and Sn :=

∑n
i=1 Xi. Our discussion

is a little sketchy. But this should not cause too much confusion, since we
encountered most of the key ideas earlier on in this chapter. Throughout
this section, ‖x‖ denotes the usual Euclidean norm of a variable x ∈ Rd.
That is,

(7.53) ‖x‖ :=
√

x2
1 + · · · + x2

d
∀x ∈ Rd.

Definition 7.16. The characteristic function of X is the function f(t) =
Eeit·X where t · x =

∑d
i=1 tixi for t ∈ Rd. If µ denotes the distribution of

X, then f is also written as µ̂.



102 7. The Central Limit Theorem

The following is the simplest analogue of the uniqueness theorem; it is
an immediate consequence of the convergence theorem (p. 99).

Theorem 7.17. If µ, µ1, µ2, . . . are probability measures on (Rd,B(Rd))
and µ̂n → µ̂ pointwise, then µn ⇒ µ.

This leads us to our next result.

Theorem 7.18. Suppose {Xi}∞i=1 are i.i.d. random variables in Rd with
EXi

1 = µi, and Cov(Xi
1 , Xj

1) = Qi,j for an invertible (d × d) matrix Q :=
(Qi,j). Then for all d-dimensional hypercubes G = (a1 , b1] × · · · × (ad , bd],

(7.54) lim
n→∞

P
{

Sn − nµ√
n

∈ G

}
=
∫

G

e−
1
2
y′Q−1y

(2π)d/2
√

det(Q)
dy.

That is, (Sn−nµ)/
√

n converges weakly to a multidimensional Gaussian
distribution with mean vector 0 and covariance matrix Q.

The preceding theorems are the natural d-dimensional extensions of their
1-D counterparts. On the other hand, the following is inherently multi-
dimensional.

The Cramér–Wold Device. Xn ⇒ X if and only if (t · Xn) ⇒ (t · X)
for all t ∈ Rd.

If we were to prove that Xn converges weakly, then the Crámer–Wold
device boils our task down to proving the weak convergence of the one-
dimensional (t · Xn). But this needs to be proved for all t ∈ Rd.

Proof. Suppose Xn ⇒ X, and choose and fix f ∈ Cb(Rd). Because gt(x) =
t · x is continuous, Ef(gt(Xn)) converges to Ef(gt(X)) as n → ∞. This is
half of the theorem.

Conversely, let µn and µ denote the distributions of Xn and X, respec-
tively. Then (t ·Xn) ⇒ (t ·X) for all t ∈ Rd iff µ̂n(t) → µ̂(t). The converse
now follows from Theorem 7.17. �

6.2. The Projective Central Limit Theorem. The projective CLT de-
scribes another natural way of arriving at the standard normal distribution.
In kinetic theory this CLT implies that, for an ideal gas, all normalized Gibbs
states follow the standard normal distribution. We are concerned only with
the mathematical formulation of this CLT.

Definition 7.19. Define Sn−1 := {x ∈ Rn : ‖x‖ = 1} to be the unit sphere
in Rn. This is topologized by the relative topology in Rn. That is, U ⊂ Sn−1

is open in Sn−1 iff U is an open subset of Rn.

Recall that an (n × n) matrix M is a rotation if M ′M is the identity.
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Definition 7.20. A measure µ on B(Sn−1) is called the uniform distribution
on Sn−1 if: (i) µ(Sn−1) = 1; and (ii) µ(A) = µ(MA) for all A ∈ B(Sn−1)
and all (n × n) rotation matrices M . If X is a random variable whose
distribution is µ, then we say that X is distributed uniformly on Sn−1. Item
(ii) states that µ is rotation invariant.

Theorem 7.21. If X(n) is distributed uniformly on Sn−1, then

(7.55)
√

nX
(n)
1 ⇒ N(0 , 1).

Remark 7.22. Without worrying too much about what this really means
let X denote the first coordinate of a random variable that is distributed
uniformly on the centered ball of radius

√
∞ in R∞. The projective CLT

asserts that X is standard normal.

Before we prove Theorem 7.21 we need to demonstrate that there are,
in fact, rotation-invariant probability measures on Sn−1. The following is a
special case of a more general result in abstract harmonic analysis.

Theorem 7.23. For all n ≥ 1 there exists a unique rotation-invariant prob-
ability measure on Sn−1.

Proof. Let {Zi}∞i=1 denote a sequence of i.i.d. standard normal random
variables, and define Z(n) = (Z1, . . . , Zn). We normalize the latter as follows:

(7.56) X(n) :=
Z(n)∥∥Z(n)

∥∥ ∀n ≥ 1.

By independence, the characteristic function of Z(n) is f(t) := exp(−‖t‖2/2).
Because f is rotation-invariant, Z(n) and MZ(n) have the same characteristic
function as long as M is an (n × n) rotation matrix. Consequently, Z(n)

and MZ(n) have the same distribution for all rotations M ; confer with the
uniqueness theorem on page 99. It follows that the distribution of X(n) is
rotation invariant, and hence the existence of a uniform distribution on Sn−1

follows. Next we prove the more interesting uniqueness portion.
For all ε > 0 and all sets A ⊆ Sn−1 define KA(ε) to be the largest number

of disjoint open balls of radius ε that can fit inside A. By compactness, if
A is closed then KA(ε) is finite. The function KA is known as Kolmogorov
ε-entropy, Kolmogorov complexity, as well as the packing number of A.

Let µ and ν be two uniform probability measures on B(Sn−1). By
the maximality condition in the definition of KA, and by the rotational
invariance of µ and ν, for all closed sets A ⊂ Sn−1,

(7.57) KA(ε)µ(Bε) ≤ µ(A) ≤ (KA(ε) + 1)µ(Bε),

where Bε := {x ∈ Sn−1 : ‖x‖ < ε}. The preceding display remains valid
if we replace µ by ν everywhere. Therefore, for all closed sets A that have
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positive ν-measure,

(7.58)
(

KA(ε)
KA(ε) + 1

)
µ(A)
ν(A)

≤ µ(Bε)
ν(Bε)

≤
(

KA(ε) + 1
KA(ε)

)
µ(A)
ν(A)

.

Consequently,

(7.59)
∣∣∣∣µ(A)
ν(A)

− µ(Bε)
ν(Bε)

∣∣∣∣ ≤ 1
KA(ε)

µ(A)
ν(A)

.

We apply this with A := Sn−1 to find that

(7.60)
∣∣∣∣1 − µ(Bε)

ν(Bε)

∣∣∣∣ ≤ 1
KSn−1(ε)

.

We plug this back in (7.59) to conclude that for all closed sets A with positive
ν-measure,

(7.61)
∣∣∣∣µ(A)
ν(A)

− 1
∣∣∣∣ ≤ 1

KA(ε)
µ(A)
ν(A)

+
1

KSn−1(ε)
∀ε > 0.

As ε tends to zero, the right-hand side converges to zero. This implies that
µ(A) = ν(A) for all closed sets A ∈ B(Sn−1) that have positive ν-measure.
Next, we reverse the roles of µ and ν to find that µ(A) = ν(A) for all
closed sets A ∈ B(Sn−1). Because closed sets generate all of B(Sn−1), the
monotone class theorem (p. 30) implies that µ = ν. �

Proof of Theorem 7.21. We follow the proof of Theorem 7.23 closely, and
observe that by the strong law of large numbers (p. 73), ‖Z(n)‖/

√
n → 1

a.s. Therefore,
√

nX
(n)
1 → Z1 a.s. The latter is standard normal. Since

a.s.-convergence implies weak convergence, the theorem follows. �

6.3. The Replacement Method of Liapounov. There are other ap-
proaches to the CLT than the harmonic-analytic ones of the previous sec-
tions. In this section we present an alternative probabilistic method of
Lindeberg (1922) who, in turn, used an ingenious “replacement method” of
Liapounov (1900, pp. 362–364). This method makes clear the fact that the
CLT is a local phenomenon. By this we mean that the structure of the CLT
does not depend on the behavior of any fixed number of the increments.

In words, the method proceeds as follows: We estimate the distribution
of Sn by replacing the increments, one at a time, by independent normal
random variables. Then we use an idea of Lindeberg, and appeal to Taylor’s
theorem of calculus to keep track of the errors incurred by the replacement
method.

As a nice by-product we obtain quantitative bounds on the error-rate
in the CLT without further effort. To be concrete, we derive the following
using the Liapounov method; the heart of the matter lies in its derivation.
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Theorem 7.24. Fix an integer n ≥ 1, and suppose {Xi}n
i=1 are independent

mean-zero random variables in L3(P). Define Sn :=
∑n

i=1 Xi and s2
n :=

VarSn. Then for any three times continuously differentiable function f ,

(7.62)
∣∣Ef(Sn) − Ef

(
N(0 , s2

n)
)∣∣ ≤ 2Mf

3
√

π/2

n∑
i=1

‖Xi‖3
3,

provided that Mf := supz |f ′′′(z)| is finite.

Proof. Let σ2
i denote the variance of Xi for all i = 1, . . . , n, so that s2

n =∑n
i=1 σ2

i . By Taylor expansion,∣∣∣∣f(Sn) − f(Sn−1) − Xnf ′(Sn−1) −
X2

n

2
f ′′(Sn−1)

∣∣∣∣ ≤ Mf

6
|Xn|3.(7.63)

Because EXn = 0 and E[X2
n] = σ2

n, the independence of the X’s implies that

(7.64)
∣∣∣∣Ef(Sn) − Ef(Sn−1) −

σ2
n

2
Ef ′′(Sn−1)

∣∣∣∣ ≤ Mf

6
‖Xn‖3

3.

Next consider a normal random variable Zn that has the same mean and
variance as Xn, and is independent of X1, . . . , Xn. If we apply (7.64), but
replace Xn by Zn, then we obtain

(7.65)
∣∣∣∣Ef(Sn−1 + Zn) − Ef(Sn−1) −

σ2
n

2
Ef ′′(Sn−1)

∣∣∣∣ ≤ Mf

6
‖Zn‖3

3.

This and (7.64) together yield

|Ef(Sn) − Ef(Sn−1 + Zn)| ≤ Mf

6
(
‖Zn‖3

3 + ‖Xn‖3
3

)
.(7.66)

A routine computation reveals that ‖Zn‖3
3 = Aσ3

n, where A := E{|N(0 , 1)|3} =
2/
√

π/2 > 1. Since σ3
n ≤ ‖Xn‖3

3 (Proposition 4.16, p. 42), we find that

(7.67) |Ef(Sn) − Ef(Sn−1 + Zn)| ≤ 2Mf

3
√

π/2
‖Xn‖3

3.

Now we iterate this procedure: Bring in an independent normal Zn−1

with the same mean and variance as Xn−1. Replace Xn−1 by Zn−1 in (7.67)
to find that

(7.68) |Ef(Sn) − Ef(Sn−2 + Zn−1 + Zn)| ≤ 2Mf

3
√

π/2

(
‖Xn−1‖3

3 + ‖Xn‖3
3

)
.

Next replace Xn−2 by another independent normal Zn−2, etc. After n steps,
we arrive at

(7.69) |Ef(Sn) − Ef (
∑n

i=1 Zi)| ≤
2Mf

3
√

π/2

n∑
i=1

‖Xi‖3
3.

The theorem follows because
∑n

i=1 Zi = N(0 , s2
n); see Problem 7.18. �
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To understand how this can be used suppose {Xi}n
i=1 are i.i.d., with

mean zero and variance σ2. We can then apply Theorem 7.24 with f(x) :=
g(x

√
n) to deduce the following.

Corollary 7.25. If {Xi}n
i=1 are i.i.d. with mean zero, variance σ2, and

three bounded moments, then for all three times continuously differentiable
functions g,

(7.70)
∣∣Eg(Sn/

√
n) − Eg(N(0, σ2))

∣∣ ≤ A√
n

,

where A := 2 supz |g′′′(z)| · ‖X1‖3
3/(3

√
π/2).

We let g(x) := eitx, and extend the preceding to complex-valued func-
tions in the obvious way to obtain the central limit theorem (p. 100) under
the extra condition that X1 ∈ L3(P). Moreover, when X1 ∈ L3(P) we find
that the rate of convergence to the CLT is of the order n−1/2.

Theorem 7.24 is not restricted to increments that are in L3(P). For the
case where X1 ∈ L2+ρ(P) for some ρ ∈ (0 , 1) see Problem 7.44. Even when
X1 ∈ L2(P) only, Theorem 7.24 can be used to prove the CLT, viz.,

Lindeberg’s Proof of the CLT. Without loss of generality, we may as-
sume that µ = 0 and σ = 1. Choose and fix ε > 0, and define X ′

i :=
Xi1{|Xi|≤ε

√
n}, S′

n :=
∑n

i=1 X ′
i, µn := ES′

n, and s2
n := VarS′

n.
Choose and fix a function g : R → R such that g and its first three

derivatives are bounded and continuous. According to Theorem 7.24,∣∣∣∣Eg

(
S′

n − µn√
n

)
− Eg

(
N

(
0 ,

s2
n

n

))∣∣∣∣ ≤ 2Mg

3
√

πn/2
E
(∣∣X ′

1 − EX ′
1

∣∣3)
≤ 32Mg

3
√

πn/2
‖X ′

1‖3
3.

(7.71)

The last line follows from the inequality |a+ b|3 ≤ 8(|a|3 + |b|3) and the fact
that ‖X ′

1‖1 ≤ ‖X ′
1‖3 (Proposition 4.16, p. 42). Because |X ′

1| is bounded
above by ε

√
n,

(7.72) ‖X ′
1‖3

3 ≤ ε
√

n E
(
|X ′

1|2
)
≤ ε

√
n E
(
X2

1

)
= ε

√
n.

Consequently,

(7.73)
∣∣∣∣Eg

(
S′

n − µn√
n

)
− Eg

(
N

(
0 ,

s2
n

n

))∣∣∣∣ ≤ 32Mg

3
√

π/2
ε := Aε.
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A one-term Taylor expansion simplifies the first term as follows:∣∣∣∣Eg

(
S′

n − µn√
n

)
− Eg

(
Sn√

n

)∣∣∣∣ ≤ sup
z

|g′(z)| E
∣∣∣∣S′

n − Sn − µn√
n

∣∣∣∣
≤ sup

z
|g′(z)| SD(Sn − S′

n)√
n

.

(7.74)

Since Sn − S′
n =

∑n
i=1 Xi1{|Xi|≥ε

√
n} is a sum of n i.i.d. random variables,

(7.75) Var(Sn − S′
n) = nVar

(
X11{|X1|>ε

√
n}

)
≤ nE

[
X2

1 ; |X1| > ε
√

n
]
.

Therefore,

(7.76)
∣∣∣∣Eg

(
Sn√

n

)
− Eg

(
N

(
0 ,

s2
n

n

))∣∣∣∣ ≤ Aε +
√

E
[
X2

1 ; |X1| > ε
√

n
]
.

Now, s2
n/n = Var(S′

n)/n = Var(X11{|X1|>ε
√

n}). By the dominated conver-
gence theorem, this converges to VarX1 = 1 as n → ∞. Therefore by scaling
(Problem 1.14, p. 14),

(7.77) Eg

(
N

(
0 ,

s2
n

n

))
= Eg

(
N(0 , 1)

sn√
n

)
→ Eg(N(0 , 1)),

as n → ∞. This, the continuity of g, and (7.76), together yield

(7.78) lim sup
n→∞

|Eg
(
Sn/

√
n
)
− Eg(N(0 , 1))| ≤ Aε.

Because the left-hand side is independent of ε, it must therefore be equal
to zero. It follows that Eg(Sn/

√
n) → Eg(N(0 , 1)) if g and its first three

derivatives are continuous and bounded.
Now suppose ψ ∈ Cc(R) is fixed. By Fejér’s theorem (p. 98), for all

δ > 0 we can find g such that g and its first three derivatives are bounded
and continuous, and supz |g(z) − ψ(z)| ≤ δ. Because δ is arbitrary, the
triangle inequality and what we have proved so far together prove that
Eψ(Sn/

√
n) → Eψ(N(0 , 1)). This is the desired result. �

6.4. Cramér’s Theorem. In this section we use characteristic function
methods to prove the following striking theorem of Cramér (1936). This
section requires only a rudimentary knowledge of complex analysis.

Theorem 7.26. Suppose X1 and X2 are independent real-valued random
variables such that X1+X2 is a possibly degenerate normal random variable.
Then X1 and X2 are possibly degenerate normal random variables too.

Remark 7.27. Cramér’s theorem states that if µ1 and µ2 are probability
measures such that µ̂1(t)µ̂2(t) = eiµt−σ2t2 (µ ∈ R, σ ≥ 0), then µ1 and µ2

are Gaussian probability measures.
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Remark 7.28. Cramér’s theorem does not rule out the possibility that one
or both of the Xi’s are constants. It might help to recall our convention
that N(µ , 0) = µ.

We prove Cramér’s theorem by first deriving three elementary lemmas
from complex analysis, and one from probability. Recall that a function
f : C → C is entire function if is is analytic on C.

Lemma 7.29 (The Liouville Theorem). Suppose f : C → C is an entire
function, and there exists an integer n ≥ 0 such that

(7.79) |f(z)| = O (|z|n) as |z| → ∞.

Then there exist a0, . . . , an ∈ C such that f(z) =
∑n

j=0 ajz
j on C.

Remark 7.30. When n = 0, Lemma 7.29 asserts that bounded entire func-
tions are constants. This is the more usual form of the Liouville theorem.

Proof. For any z0 ∈ C and ρ > 0, define γ(θ) := z0+ρeiθ for all θ ∈ (0 , 2π].
By the Cauchy integral formula on circles, for any n ≥ 0, the nth derivative
f (n) is analytic and satisfies

f (n+1)(z0) =
(n + 1)!

2πi

∫
γ

f(z)
(z − z0)n+2

dz

=
(n + 1)!
2πiρn+1

∫ 2π

0

f
(
z0 + ρeiθ

)
ei(n+2)θ

dθ.

(7.80)

Since f is continuous, (7.79) tells us that there exists a constant A > 0 such
that |f(z0 + ρeiθ)| ≤ Aρn for all ρ > 0 sufficiently large and all θ ∈ [0 , 2π).
In particular, |f (n+1)(z0)| ≤ (n + 1)!Aρ−1. Because this holds for all large
ρ > 0, f (n+1)(z0) = 0 for all z0 ∈ C, whence follows the result. �
Lemma 7.31 (Schwarz). Choose and fix A, ρ > 0. Suppose f is analytic
on Bρ := {w ∈ C : |w| < ρ}, f(0) = 0, and supz∈Bρ

|f(z)| ≤ A. Then,

(7.81) |f(z)| ≤ A|z|
ρ

on Bρ.

Proof. Define

(7.82) F (z) :=

{
f(z)/z if z �= 0,

f ′(0) if z = 0.

Evidently, F is analytic on Bρ. According to the maximum principle, an
analytic function in a given domain attains its maximum on the boundary
of the domain. Therefore, whenever r ∈ (0 , ρ), it follows that

(7.83) |F (z)| ≤ sup
|w|=r

|F (w)| ≤ A

r
∀|z| < r.

Let r converge upward to ρ to finish. �
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The following is our final requirement from complex analysis.

Lemma 7.32 (Borel and Carathéodory). If f : C → C is entire, then

(7.84) sup
|z|≤r/2

|f(z)| ≤ 4 sup
|z|≤r

|Re f(z)| + 5|f(0)| ∀r > 0.

Proof. Let g(z) := f(z) − f(0), so that g is entire and g(0) = 0. Define
R(r) := sup|z|≤r |Re g(z)| for all r > 0, and consider the function

(7.85) T (w) :=
w

2R(r) − w
∀|w| ≤ R(r).

Evidently,

(7.86) g(z) = 2R(r)
T (g(z))

1 + T (g(z))
.

One can check directly that |T (f(z))| ≤ 1 for all z ∈ Br, and hence T ◦ g is
analytic on Br. Because T (g(0)) = 0, Lemma 7.31 implies that |T (g(z))| ≤
|z|/r for all z ∈ Br. It follows that for all z ∈ Br,

(7.87) |g(z)| ≤ 2R(r)
|z|/r

1 − (|z|/r) .

This proves that, |g(z)| ≤ 4R(r), uniformly for |z| ≤ r/2, and hence,

(7.88) sup
|z|≤r/2

|f(z) − f(0)| ≤ 4 sup
|z|≤r

|Re f(z) − Re f(0)|.

The lemma follows from this and the triangle inequality. �

Finally, we need a preparatory lemma from probability.

Lemma 7.33. If V ≥ 0 a.s., then for any a > 0,

(7.89) EeaV = 1 + a

∫ ∞

0
eaxP{V ≥ x} dx.

In particular, suppose U is non-negative, and there exists r ≥ 1 such that

(7.90) P{V ≥ x} ≤ rP{U ≥ x} ∀x > 0.

Then, EeaV ≤ rEeaU for all a > 0.

Proof. Because eaV (ω) = 1+a
∫∞
0 1{V (ω)≥x}e

ax dx and the integrand is non-
negative, we can take expectations and use Fubini–Tonelli to deduce (7.89).
Because r ≥ 1, the second assertion is a ready corollary of the first �

Proof of Theorem 7.26. Throughout, let Z := X1 + X2; Z is normally
distributed. We can assume without loss of generality that EZ = 0; else we
consider Z − EZ in place of Z. The proof is now carried out in two natural
steps.
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Step 1. Identifying the Modulus. We begin by finding the form of
∣∣EeitXk

∣∣
for k = 1, 2.

Because EZ = 0, there exists σ ≥ 0 such that E exp(zZ) = exp(z2σ2)
for all z ∈ C. Since |Z| ≥ |X1| − |X2|, if |X1| ≥ λ and |X2| ≤ m then
|Z| ≥ λ − m. Therefore, by independence,

P {|Z| ≥ λ − m} ≥ P {|X1| ≥ λ}P {|X2| ≤ m}

≥ 1
4
P {|X1| ≥ λ} ,

(7.91)

provided that we choose a sufficiently large m. Choose and fix such an m.
In accord with Lemma 7.33, Eec|X1| ≤ 4ecmEec|Z| for all c > 0. But

(7.92) Eec|Z| ≤ EecZ + Ee−cZ ≤ 2ec2σ2 ∀c > 0.

Consequently,

(7.93)
∣∣EezX1

∣∣ ≤ Ee|z|·|X1| ≤ 8 exp
(
|z|m + σ2|z|2

) ∀z ∈ C.

Because |Z| ≥ |X2| − |X1|, the same bound holds if we replace X1 by X2

everywhere. This proves that fk(z) := E exp(zXk) exists for all z ∈ C, and
defines an entire function (why?).

To summarize, R � t �→ fk(it) is the characteristic function of Xk, and

(7.94) |fk(z)| ≤ 8 exp
(
|z|m + σ2|z|2

) ∀z ∈ C, k = 1, 2.

Because f1(z)f2(z) = E exp(zZ) = exp(z2σ2), (7.94) implies that for all
z ∈ C and k = 1, 2,

(7.95) 8 exp
(
|z|m + σ2|z|2

)
|fk(z)| ≥ | exp(z2σ2)| ≥ exp

(
−|z|2σ2

)
.

It follows from this and (7.94) that for all z ∈ C and k = 1, 2,

(7.96)
1
8

exp
(
−|z|m − 2σ2|z|2

)
≤ |fk(z)| ≤ 8 exp

(
|z|m + σ2|z|2

)
.

Consequently, ln |fk| is an entire function that satisfies the growth condition
(7.79) of Lemma 7.29 with n = 2, and hence,

(7.97) |f1(z)| = exp
(
a0 + a1z + a2z

2
) ∀z ∈ C.

A similar expression holds for |f2(z)|.
Step 2. Estimating the Imaginary Part. Because fk is non-vanishing and

entire, we can write

(7.98) fk(z) = exp(gk(z)),

where gk is entire for k = 1, 2. To prove this we first note that f ′
k/fk is

entire, and therefore so is

(7.99) gk(z) :=
∫ z

0

f ′
k(w)

fk(w)
dw.
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Next we compute directly to find that (e−gkfk)′(z) = 0 for all z ∈ C.
Because fk(0) = 1 and gk(0) = 0, it follows that fk(z) = exp(gk(z)), as
asserted.

It follows then that |fk(z)| = exp(Re gk(z)), and Step 1 implies that
Re gk is a complex quadratic polynomial for k = 1, 2. Thanks to this and
Lemma 7.32, we can deduce that the entire function gk satisfies (7.79) with
n = 2. Therefore, by Liouville’s theorem, gk(z) = αk + βkz + γkz

2 where
α1, α2, β1, β2, γ1, γ2 are complex numbers. Consequently,

(7.100) EeitXk = fk(it) = exp
(
αk + itβk − t2γk

) ∀t ∈ R, k = 1, 2.

Plug in t = 0 to find that αk = 0. Also part (1) of Lemma 7.9 implies that
fk(−it) is the complex conjugate of fk(it). We can write this out to find
that

(7.101) exp(−itβk − t2γk) = exp(−itβk − t2γk) ∀t ∈ R.

This proves that

(7.102) itβk − t2γk = itβk − t2γk + 2πiN(t),

where N(t) is integer-valued for every t ∈ R. All else being continuous, this
proves that N is a continuous integer-valued function. Therefore, N(t) =
N(0) = 0, and so it follows from the preceding display that βk and γk are
real-valued. Because |fk(it)| ≤ 1, we have also that γk ≥ 0. The result
follows from these calculations. �

Problems

7.1. Define C∞
c (Rk) to be the collection of all infinitely differentiable functions f : Rk → R that

have compact support. If µ, µ1, µ2, . . . are probability measures on (Rk, B(Rk)), then prove that
µn ⇒ µ iff

R

f dµn →
R

f dµ for all f ∈ C∞
c (Rk).

7.2. If µ, µ1, µ2, . . . , µn is a sequence of probability measures on (Rd, B(Rd)), then show that
the following are characteristic functions of probability measures:

(1) bµ;

(2) Re bµ,

(3) |bµ|2;

(4)
Qn

j=1 bµj ; and

(5)
Pn

j=1 pjcµj , where p1, . . . , pn ≥ 0 and
Pn

j=1 pj = 1.

Also prove that bµ(ξ) = bµ(−ξ). Consequently, if µ is a symmetric measure (i.e., µ(−A) = µ(A)

for all A ∈ B(Rd)) then bµ is a real-valued function.

7.3. Use characteristic functions to derive Problem 1.17 on page 14. Apply this to prove that if

X = Unif[−1 , 1], then we can write it as

(7.103) X :=
∞
X

j=1

Xj

2j
,

where the Xj ’s are i.i.d., taking the values ±1 with probability 1
2

each.
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7.4 (Problem 7.3, continued). Prove that

(7.104)
sin x

x
=

∞
Y

k=1

cos
“ x

2k

”

∀x ∈ R \ {0}.

By continuity, this is true also for x = 0.

7.5. Let X and Y denote two random variables on the same probability space. Suppose that
X + Y and X − Y are independent standard-normal random variables. Then prove that X and

Y are independent normal random variables. You may not use Theorem 7.26 or its proof.

7.6. Suppose X1 and X2 are independent random variables. Use characteristic functions to prove
that:

(1) If Xi = Bin(ni , p) for the same p ∈ [0 , 1], then X1 + X2 = Bin(n1 + n2 , p).

(2) If Xi = Poiss(λi), then X1 + X2 = Poiss(λ1 + λ2).

(3) If Xi = N(µi , σ2
i ), then X1 + X2 = N(µ1 + µ2 , σ2

1 + σ2
2).

7.7. Let X have the gamma distribution with parameters (α , λ). Compute, carefully, the char-
acteristic function of X. Use it to prove that if X1, X2, . . . are i.i.d. exponential random variables

with parameter λ each, then Sn := X1 + · · · + Xn has a gamma distribution. Identify the latter
distribution’s parameters.

7.8. Let f be a symmetric and bounded probability density function on R. Suppose there exists

C > 0 and α ∈ (0 , 1] such that

(7.105) f(x) ∼ C|x|−(1+α) as |x| → ∞.

Prove that

(7.106) bf(t) = 1 − D|t|α + o(|t|α) as |t| → 0,

and compute D. Check also that D < ∞. What happens if α > 1?

7.9 (Lévy’s Concentration Inequality). Prove that if µ is a probability measure on the line, then

(7.107) µ

„j

x : |x| >
1

ε

ff«

≤ 7

ε

Z ε

0
(1 − Re bµ(t)) dt ∀ε > 0.

(Hint: Start with the right-hand side.)

7.10 (Fourier Series). Suppose X is a random variable that takes values in Zd and has mass
function p(x) = P{X = x}. Define bp(t) = Eeit·X , and derive the following inversion formula:

(7.108) p(x) =
1

(2π)d

Z

[−π,π]d
exp(−it · x) bp(t) dt ∀x ∈ Zd.

Is the latter identity valid for all x ∈ Rd?

7.11. Derive the following variant of Plancherel’s theorem (p. 99): For any a < b and all proba-

bility measures µ on (R , B(R)),

(7.109) lim
ε↓0

1

2πi

Z ∞

−∞
e−ε2t2/2

„

e−ita − e−itb

t

«

bµ(t) dt = µ ((a , b)) +
µ({a}) + µ({b})

2
.

7.12 (Inversion Theorem). Derive the inversion theorem: If µ is a probability measure on B(Rk)

such that bµ is integrable [dx], then µ is absolutely continuous with respect to the Lebesgue measure
on Rk. Moreover, then µ has a uniformly continuous density function f , and

(7.110) f(x) =
1

(2π)k

Z

Rk
e−it·x

bf(t) dt ∀x ∈ Rk.

7.13 (The Triangular Distribution). Consider the density function f(x) := (1 − |x|)+ for x ∈ R.
If the density function of X is f , then compute the characteristic function of X. Prove that f

itself is the characteristic function of a probability measure. (Hint: Problem 7.12.)

7.14. Suppose f is a probability density function on R; i.e., f ≥ 0 a.e. and
R∞
−∞ f(x) dx = 1.
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(1) We say that f is of positive type if bf is non-negative and integrable. Prove that if f is
of positive type, then f(x) ≤ f(0) for all x ∈ R.

(2) Prove that if f is of positive type, then g(x) := bf(x)/(2πf(0)) is a density function,

and bg(t) = f(t)/f(0). (Hint: Problem 7.12.)

(3) Compute the characteristic function of g(x) = 1
2

exp(−|x|). Use this to conclude that

f(x) := π−1(1 + x2)−1 is a probability density function whose characteristic function

is bf(t) = exp(−|t|). The function f defines the so-called Cauchy density function.
[Alternatively, you may use contour integration to arrive at the end result.]

7.15 (Riemann–Lebesgue lemma). Prove that lim|t|→∞ Eeit·X = 0 for all k-dimensional abso-

lutely continuous random variables X. Can the absolute-continuity condition be removed alto-
gether? (Hint: Consider first a nice X.)

7.16. Suppose X and Y are two independent random variables; X is absolutely continuous with

density function f , and the distribution of Y is µ. Prove that X +Y is absolutely continuous with
density function

(7.111) (f ∗ µ)(x) :=

Z

f(x − y) µ(dy).

Prove also that if Y is absolutely continuous with density function g, then the density function of
X + Y is f ∗ g.

7.17. Prove that the CLT (p. 100) continues to hold when σ = 0.

7.18. A probability measure µ on (R , B(R)) is said to be infinitely divisible if for any n ≥ 1

there exists a probability measure ν such that bµ = (bν)n. Prove that the normal and the Poisson
distributions are infinitely divisible. So is the probability density

(7.112) f(x) :=
1

π(1 + x2)
∀x ∈ R.

This is called the Cauchy distribution. (Hint: Problem 7.14.)

7.19. Prove that if {Xi}∞i=1 are i.i.d. uniform-[0 , 1] random variables, then

(7.113)
4
Pn

i=1 iXi − n2

n3/2
converges weakly.

Identify the limiting distribution.

7.20 (Extreme Values). If {Xi}∞i=1 are i.i.d. standard normal random variables, then find non-
random sequences an, bn → ∞ such that an max1≤i≤n Xi − bn converges weakly. Identify the

limiting distribution. Replace “standard normal” by “mean-λ exponential,” where λ > 0 is a fixed
number, and repeat the exercise.

7.21. Let {Xi}∞i=1 denote independent random variables such that

(7.114) Xj =

(

±j each with probability (4j2)−1,

±1 with probability 1
2
− (4j2)−1.

Prove that

(7.115)
Sn

SD(Sn)
⇒ N(0 , σ2),

and compute σ.

7.22 (An abelian CLT). Suppose that {Xi}∞i=1 are i.i.d. with EX1 = 0 and E[X2
1 ] = σ2 < ∞.

First establish that
P∞

i=1 riXi converges almost surely for all r ∈ (0 , 1). Then, prove that

(7.116)
√

1 − r
∞
X

i=0

riXi ⇒ N(0 , γ2) as n → ∞,

and compute γ (Bovier and Picco, 1996).

7.23. State and prove a variant of Theorem 7.18 that does not assume Q to be non-singular.
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7.24 (Liapounov Condition). In the notation of Problem 7.38 below assume there exists δ > 0
such that

(7.117) lim
n→∞

1

s2+δ
n

n
X

j=1

E
h

|Xj − µj |2+δ
i

= 0.

Prove the theorem of Liapounov (1900, 1922):

(7.118)
Sn −

Pn
j=1 µj

sn
⇒ N(0 , 1).

Check that the variables of Problem 7.21 do not satisfy (7.129).

7.25. Compute

(7.119) lim
n→∞

e−n

„

1 + n +
n2

2
+

n3

3!
+

n4

4!
+ · · · + nn

n!

«

.

7.26 (The Simple Walk). Let e1, . . . , ed denote the usual basis vectors of Rd; i.e., e1 = (1, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0), etc. Consider i.i.d. random variables {Xi}∞i=1 such that

(7.120) P{X1 = ±ej} =
1

2d
.

Then the random process Sn = X1 + · · · + Xn with S0 = 0 is the simple walk on Zd. It starts
at zero and moves to each of the neighboring sites in Zd with equal probability, and the process

continues in this way ad infinitum. Find vectors an and constants bn such that (Sn − an)/bn

converges weakly to a nontrivial limit distribution. Compute the latter distribution.

7.27 (Problem 7.26, continued). Consider a collection of points Π = {πi}n
i=0 in Zd. We say that

Π is a lattice path of length n if π0 = 0, and for all i = 2, . . . , n − 1 the distance between πi and
πi+1 is one. Prove that all lattice paths Π of length n are equally likely for the first n steps in a

simple walk.

7.28 (Problem 7.27, continued). Let Nn(d) denote the number of length-n lattice-paths {πi}n
i=0

such that πn = 0. Then prove that

(7.121) Nn(d) =
1

(2π)d

Z

[−π,π]d

2

42

d
X

j=1

cos tj

3

5

n

dt

if n ≥ 2 is even; else Nn(d) = 0. Conclude the 1655 Wallis formula:

(7.122)

Z π

−π
(cos t)n dt =

“ n

n/2

” π

2n−1
,

valid for all even n ≥ 2. (Hint: Problem 7.10.)

7.29. Suppose {Xi}∞i=1 are i.i.d., mean-zero, and in L2(P). Prove that there exists a positive

constant c such that

(7.123) E

„

max
1≤j≤n

|Sj |
«

≥ c SD(X1)
√

n ∀n ≥ 1.

Compare to Problem 6.27 on page 87.

7.30. Suppose that Xn ⇒ X and Yn ⇒ Y as n → ∞, where Xn, Yn, X, and Y are real-valued.

(1) Prove that if Y is non-random, then Yn → Y in probability. Conclude from this that

(Xn, Yn) ⇒ (X, Y ).

(2) Prove that if {Xn}∞n=1 and {Yn}∞n=1 are independent from one another, then (Xn, Yn)

converges weakly to (X, Y ).

(3) Find an example where Xn ⇒ X, Yn ⇒ Y , and (Xn, Yn) �⇒ (X, Y ).
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7.31 (Variance-Stabilizing Transformations). Suppose g : R → R has at least three bounded
continuous derivatives, and let X1, X2, . . . be i.i.d. and in L2(P). Prove that

(7.124)
√

n [g(X̄n) − g(µ)] ⇒ N(0 , σ2),

where X̄n := n−1
Pn

i=1 Xi, µ := EX1, and σ := SD(X1)g′(µ). Also prove that

(7.125) Eg(X̄n) − g(µ) =
σ2g′′(µ)

2n
+ o

„

1

n

«

as n → ∞.

7.32 (Microcanonical Distributions). Prove that if X(n) is distributed uniformly on Sn−1, then

(X
(n)
1 , . . . , X

(n)
k ) ⇒ Z for any fixed k ≥ 1, where Z = (Z1, . . . , Zk) and the Zi’s are i.i.d. standard

normals.

7.33. Choose and fix an integer n ≥ 1 and let X1, X2, . . . be i.i.d. with common distribution
given by P{X1 = k} = 1/n for k = 1, . . . , n. Let Tn denote the smallest integer l ≥ 1 such that

X1 + · · · + Xl > n, and compute limn→∞ P{Tn = k} for all k.

7.34 (Uniform Integrability). Suppose X, X1, X2, . . . are real-valued random variables such that:
(i) Xn ⇒ X; and (ii) supn ‖Xn‖p < ∞ for some p > 1. Then prove that limn→∞ EXn = EX.

(Hint: See Problem 4.28 on page 51.) Use this to prove the following: Fix some p0 ∈ (0 , 1), and
define f(t) = |t − p0| (t ∈ [0 , 1]). Then prove that there exists a constant c > 0 such that the

Bernstein polynomial Bnf satisfies

(7.126) |(Bnf)(p0) − f(p0)| ≥ c
√

n
∀n ≥ 1.

Thus, (6.50) on page 78 is sharp (Kac, 1937).

7.35 (Hard). Define the Fourier map Ff = bf for f ∈ L1(Rk). Prove that

(7.127) ‖f‖L2(Rk) =
1

(2π)k/2
‖Ff‖L2(Rk)

∀f ∈ L1(Rk) ∩ L2(Rk).

This is sometimes known as the Plancherel theorem. Use it to extend F to a homeomorphism
from L2(Rk) onto itself. Conclude from this that if µ is a finite measure on B(Rk) such that
R

Rk |bµ(t)|2 dt < ∞, then µ is absolutely continuous with respect to the Lebesgue measure on Rk.

Warning: The formula (Ff)(t) =
R

Rk f(x)eit·x dx is valid only when f ∈ L1(Rk).

7.36 (An Uncertainty Principle; Hard). Prove that if f : R → R is a probability density function

that is zero outside [−π , π], then there exists t �∈ [−1/2 , 1/2] such that f̂(t) �= 0 (Donoho and

Stark, 1989). (Hint: View f as a function on [−π , π], and develop it as a Fourier series. Then
study the Fourier coefficients.)

7.37 (Hard). Choose and fix λ1, . . . , λm > 0 and a1, . . . , am ∈ R. Then prove that if m < ∞,

then fm defines the characteristic function of a probability measure, where

(7.128) fm(t) := exp

0

@−
m
X

j=1

λj (1 − cos (ajt))

1

A

∀t ∈ R, 1 ≤ m ≤ ∞.

Prove that f∞ is a characteristic function provided that
P

j(a
2
j ∧ |aj |)λj < ∞. (Hint: Consult

Example 7.14 on page 97.)

7.38 (Lindeberg CLT; Hard). Let {Xi}∞i=1 be independent L2(P)-random variables in R, and for

all n define s2
n =

Pn
j=1 VarXj and µn = EXn. In addition, suppose that sn → ∞, and

(7.129) lim
n→∞

1

s2
n

n
X

j=1

E
ˆ

(Xj − µj)
2; |Xj − µj | > εsn

˜

= 0 ∀ε > 0.

Prove the Lindeberg CLT (1922):

(7.130)
Sn −

Pn
j=1 µj

sn
⇒ N(0 , 1).

Check that the variables of Problem 7.21 do not satisfy (7.129).
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7.39 (Hard). Let (X, Y ) be a random vector in R2 and for all θ ∈ (0 , 2π] define

(7.131) Xθ := cos(θ)X + sin(θ)Y and Yθ := sin(θ)X − cos(θ)Y.

Prove that if Xθ and Yθ are independent for all θ ∈ (0 , 2π], then X and Y are independent

normal variables. (Hint: Use Cramér’s theorem to reduce the problem to the case that X and Y
are symmetric; or you can consult the original paper of Kac (1939).)

7.40 (Skorohod’s Theorem; Hard). Weak convergence does not imply a.s. convergence. To wit,

Xn ⇒ X does not even imply that any of the random variables {Xn}∞n=1 and/or X live on the
same probability space. The converse, however, is always true; check that Xn ⇒ X whenever
Xn → X almost surely. On the other hand, if you are willing to work on some probability space,

then weak convergence is equivalent to a.s. convergence as we now work to prove.

(1) If F is a distribution function on R that has a continuous inverse, and if U is uniformly

distributed on (0 , 1), then find the distribution function of F−1(U).

(2) Suppose Fn ⇒ F : All are distribution functions; each has a continuous inverse. Then

prove that limn→∞ F−1
n (U) = F−1(U) a.s.

(3) Use this to prove that whenever Xn ⇒ X∞, we can find, on a suitable probability
space, random variables X′

n and X′ such that: (i) For every 1 ≤ n ≤ ∞, X′
n has the

same distribution as Xn; and (ii) limn X′
n = X′ almost surely Skorohod (1961, 1965).

(Hint: Problem 6.9.)

7.41 (Ville’s CLT; Hard). Let Ω denote the collection of all permutations of 1, . . . , n, and let P
be the probability measure that puts mass (n!)−1 on each of the n! elements of Ω. For each ω ∈ Ω
define X1(ω) = 0, and for all k = 2, . . . , n let Xk(ω) denote the number of inversions of k in

the permutation ω; i.e., the number of times 1, . . . , k − 1 precede k in the permutation ω. [For
instance, suppose n = 4. If ω = {3, 1, 4, 2}, then X2(ω) = 1, X3(ω) = 0, and X4(ω) = 2.]

Prove that {Xi}n
i=1 are independent. Compute their distribution, and prove that the total

number of inversions Sn :=
Pn

i=1 Xi in a random permutation satisfies

(7.132)
Sn − (n2/4)

n3/2
⇒ N(0 , 1/36).

(Hint: Problem 7.38.)

7.42 (A Poincaré Inequality; Hard). Suppose X and Y are independent standard normal random

variables.

(1) Prove that for all twice continuously differentiable functions f, g : R → R that have

bounded derivatives,

Cov(f(X) , g(X)) =

Z 1

0
E
h

f ′(X)g′
“

sX +
p

1 − s2 Y
”i

ds.

(Hint: Check it first for f(x) := exp(itx) and g(x) := exp(iτx).)

(2) Conclude the “Poincaré inequality” of Nash (1958):

Varf(X) ≤ ‖f ′(X)‖2
2.

7.43 (Problem 7.18, continued; Harder). Prove that the uniform distribution on (0 , 1) is not

infinitely divisible. (Hint: bµ �= (bν)3. Simpler derivations exist, but depend on more advanced
Fourier-analytic methods.)

7.44 (Harder). Suppose {Xi}n
i=1 are i.i.d. mean-zero variance-σ2 random variables such that

E{|X1|2+ρ} < ∞ for some ρ ∈ (0 , 1). Then prove that there exists a constant A, independent of
n, such that

(7.133) |Eg(Sn/
√

n) − Eg(N(0 , σ2))| ≤ A

nρ/2
,

provided that g has three bounded and continuous derivatives.
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Notes

(1) The term “central limit theorem” seems to be due to Pólya (1920). Our treatment

covers only the beginning of a rich and well-developed theory (Lévy, 1937; Feller, 1966;
Gnedenko and Kolmogorov, 1968).

(2) The present form of the CLT is due to Lindeberg (1922). See also Problem 7.38 on
page 115. Zabell (1995) discusses the independent discovery of the Lindeberg CLT

(1922) by the nineteen-year-old Turing (1934). See also Note (8) below.

(3) Fejér’s Theorem (p. 98) appeared in 1900. Tandori (1983) discusses the fascinating
history of the problem, as well as the life of Fejér.

(4) Equation (7.40) is sometimes referred to as the Parseval identity, named after M.-A.
Parseval des Chénes for his 1801 discovery of a discrete version of (7.40) in the context

of Fourier series.

(5) For an amusing consequence of Problem 7.4 plug in x = π/2 and solve to obtain the
1593 Viéte formula for computing π:

π = 2

2

6

6

4

√
2

2

p

2 +
√

2

2

q

2 +
p

2 +
√

2

2

r

2 +

q

2 +
p

2 +
√

2

2
· · ·

3

7

7

5

−1

.

(6) Lévy (1925, p. 195) has found the following stronger version of the convergence theo-
rem: “If L(t) = limn cµn(t) exists and is continuous in a neighborhood of t = 0, then

there exists a probability measure µ such that L = bµ and µn ⇒ µ.” Lévy’s argument
was simplified by Glivenko (1936).

(7) The term “projective CLT” is non-standard. Kac (1956, p. 182, fn. 7) states that this

result “is due to Maxwell but is often ascribed to Borel.” See also Kac (1939, p. 728),
as well as Problem 7.39 above. The mentioned attribution of Kac seems to agree with

that of Borel (1925, p. 92). For a historical survey see the final section of Diaconis and
Freedman (1987), as well as Stroock and Zeitouni (1991, Introduction).

(8) The term “Liapounov replacement method” is non-standard. Many authors ascribe
this method incorrectly to Lindeberg (1922). Lindeberg used the replacement method

in order to deduce the modern-day statement of the CLT.
Trotter (1959) devised a fixed-point proof of the Lindeberg CLT. His proof can

be viewed as a translation—into the langauge of analysis—of the replacement method
of Liapounov. In this regard see also Hamedani and Walter (1984).

(9) Cramér’s theorem (p. 107) is intimately connected to general central limit theory (Gne-

denko and Kolmogorov, 1968; Lévy, 1937). The original proof of Cramér’s theorem
uses hard analytic-function theory. The ascription in Lemma 7.32 comes from Veech
(1967, Lemma 7.1, p. 183).

(10) Problem 7.5 goes at least as far back as 1941; see the collected works of Bernštĕın

(1964, pp. 314–315).

(11) Problem 7.41 is borrowed from Ville (1943).

(12) Problem 7.42 is due to Nash (1958), and plays a key role in his estimate for the
solution to the Dirichlet problem. The elegant method outlined here is due to Houdré,

Pérez-Abreu, and Surgailis (1998).


