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Chapter 2. Babbage and French Idéologie: Functional Equations, Language,
and the Analytical Method
Eduardo L. Ortiz 13

Introduction 13
Speculation on the Origin of Languages 14
Senses, Languages, and the Elaboration of a Theory of Signs 16
The Position of Grammar 17
On the Language of Calculation 18
Babbage and a “Language” for the Solution of Functional Equations 19
Babbage’s Notation 21
Babbage’s Treatment of Functional Equations 23
Babbage and First-Order Functional Equations in One Variable 26
The Aftermath of Condillac in France: The Beginning of a Discussion 28
De Gérando’s Critique of Condillac: A Turning Point in Idéologie 31
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