
CHAPTER 1

Basics on tensor norms

This first chapter presents the basics of tensor norms following the spirit of
Grothendieck’s presentation. To be sure, we’ve added examples and borrowed re-
sults (with proofs) from later chapters but otherwise we’ve followed the master’s
plan.

We start with a discussion of reasonable crossnorms paying particular atten-
tion to two examples: the injective and projective norms. This is followed with
a discussion of some critical examples and Grothendieck’s famous “computation”
of the dual of the injective tensor product. A few illustrative examples follow, in

particular, we compute the closed linear span of (en ⊗ en)n≥1 in �p
∧
⊗ �p.

Our next section is devoted to tensor norms defined on the tensor product of
finite dimensional Banach spaces. This is followed by a discussion of how to extend
the definition of a tensor norm to the tensor product of infinite dimensional Banach
spaces. This leads to the delicate issues of accessible spaces and tensor norms. Here
we reproduce some of Grothendieck’s Memoir to give these notions some grit.

In the fourth section, α-integral bilinear forms and α-integral linear operators
make their appearance. It is through these classes of operators that Grothendieck’s
view of Banach space theory becomes clear. The fundamental facts about α-integral
operators include their “ideal” properties as well as their finitary (or local) determi-
nation. This section ends with another visit to the delicate subject of accessibility
and metric accessibility.

In the short fifth section α-nuclear forms and operators are introduced and
their ideal structure noted.

We close this chapter with an exposition of Grothendieck’s often overlooked
paper on the celebrated Dvoretsky-Rogers theorem. The main result here is his
generalization of their result with the conclusion that if 1 < p < ∞ and X is an
infinite dimensional Banach space, then

�p
∧
⊗ X � �p

X � �p
∨
⊗ X.

Crucial to the argumentation of this section is a discussion of Blaschke’s selection
principle, which we include as an appendix to the book.

The algebraic preliminaries

Let X, Y and Z be linear spaces (over the same scalar field K, be it the real
number field R or the complex number field C). A function ϕ : X × Y → Z is
bilinear if ϕ(x, ·) : Y → Z is linear for each x ∈ X and ϕ(·, y) : X → Z is linear for
each y ∈ Y . We will denote by B(X, Y ; Z) the linear space of all bilinear functions
from X × Y to Z and by B(X, Y ) the space of all bilinear functions on X × Y into
the scalar field.
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2 1. BASICS ON TENSOR NORMS

We will denote by X ′ the algebraic dual of X, that is, the linear space of all
linear functionals on X. L(X; Z) will denote the linear space of all linear functions
from X to Z.

The basic question answered by tensor product constructions is the following:
Is there a linear space V such that L(V ; Z) coincides with (is isomorphic to, is
naturally isomorphic to) B(X, Y ; Z)? Rephrasing the question: Can we in some
way linearize bilinear functions?

The answer is “yes” and the object we construct, the tensor product, X ⊗ Y ,
of X and Y will do the job.

Since we are looking for a vector space V which, in particular, has a dual that
is (isomorphic to) the space B(X, Y )′ of bilinear functionals, it is natural to look
inside the dual B(X, Y )′ of B(X, Y ). Therein, we find a collection of functionals
of the form x⊗ y, where x ∈ X and y ∈ Y : x⊗ y (called an elementary tensor) is
the element of B(X, Y )′ whose value at ϕ ∈ B(X, Y ) is given by the evaluation

(x⊗ y)(ϕ) = ϕ(x, y).

The tensor product X⊗Y is the linear span of the collection of elementary tensors,
{x⊗ y : x ∈ X, y ∈ Y }. So a typical u ∈ X ⊗ Y has the form

(∗) u =
n∑

i=1

λixi ⊗ yi

where λ1, . . . , λn are scalars, x1, . . . , xn ∈ X and y1, . . . , yn ∈ Y and n ∈ N is
arbitrary.

The behavior of X ⊗ Y is worth emphasizing. x⊗ y has itself a certain degree
of bilinearity. Here’s what’s so:

(1) (x1 + x2)⊗ y = (x1 ⊗ y) + (x2 ⊗ y),
(2) x⊗ (y1 + y2) = (x⊗ y1) + (x⊗ y2),
(3) λ(x⊗ y) = λx⊗ y = x⊗ λy,
(4) 0⊗ y = x⊗ 0 = 0X⊗Y .

The reason why these relations are true is because of the way we are forced to
determine when u, v ∈ X ⊗ Y are the same: u = v precisely when u(ϕ) = v(ϕ) for
each ϕ ∈ B(X, Y ). It is also obvious from these relations that the representation
(∗) of u ∈ X ⊗ Y is far from unique.

All we’ve said so far is easy enough to verify and soon leads to more insightful
features of life inside X ⊗ Y . Here’s one: Let E be a linearly independent subset
of X and let F be a linearly independent subset of Y , then the set

E ⊗ F := {e⊗ f : e ∈ E, f ∈ F}

is linearly independent in X ⊗ Y . Indeed, look at any finite linear combination
of elements of E ⊗ F . Without loss of generality, we may assume that this linear
combination is of the form ∑

i∈I,j∈J

λijei ⊗ fj ,

where the sets I and J are finite subsets of E and F respectively. Now if∑
i∈I,j∈J

λijei ⊗ fj = 0
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(in X ⊗ Y ), then, of course,( ∑
i∈I,j∈J

λijei ⊗ fj

)
(ϕ) = 0

for each and every ϕ ∈ B(X, Y ). In particular, if x′ ∈ X ′ and y′ ∈ Y ′, then the
bilinear functional ϕ(x′,y′) whose value at (x, y) ∈ X × Y is given by

ϕ(x′,y′)(x, y) = x′(x)y′(y)

also satisfies ( ∑
i∈I,j∈J

λijei ⊗ fj

)
(ϕ(x′,y′)) = 0.

That is, ∑
i∈I,j∈J

λijx
′(ei)y′(fj) = 0

for each x′ ∈ X ′ and y′ ∈ Y ′. Let’s look more closely at what’s going on here. For
each x′ ∈ X ′ and y′ ∈ Y ′ we have

0 =
∑

i∈I,j∈J

λijx
′(ei)y′(fj) = x′

( ∑
i∈I,j∈J

λijy
′(fj)ei

)
.

Since this is so for each x′ ∈ X ′, it follows that
∑

i∈I,j∈J λijy
′(fj)ei = 0; hence∑

i∈I

(∑
j∈J

λijy
′(fj)

)
ei = 0,

and by E’s linear independence, we have

0 =
∑
j∈J

λijy
′(fj) = y′

(∑
j∈J

λijfj

)
, for each i ∈ I.

Since this is so for each y′ ∈ Y ′, it follows that
∑

j∈J λijfj = 0 for each i ∈ I and
hence, thanks to F ’s linear independence, we have

λij = 0 for each j ∈ J and for each i ∈ I.

By taking a close look at what we’ve done, one soon sees that the tensor product
X ′⊗Y ′ of the dual spaces X ′ and Y ′ can be identified with a subspace of B(X, Y );
just look at the linear extension of the mapping x′⊗ y′ �→ ϕ(x′,y′) to all of X ′⊗Y ′.

Now that we have a handle on X ⊗ Y , however tenuous, it is time to establish
that X ⊗Y does the job it was created for: linearizing bilinear functions. To start,
consider ϕ ∈ B(X, Y ) and define Uϕ : X ⊗ Y → K, first on the elementary tensors
x ⊗ y by Uϕ(x ⊗ y) = ϕ(x, y) and then extend it linearly to all of X ⊗ Y . If
u =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y , then Uϕ(u) =

∑n
i=1 ϕ(xi, yi) =

∑n
i=1 Uϕ(xi ⊗ yi). Uϕ

is easily seen to be linear and we have, in fact, factored ϕ as follows:

X × Y

⊗
��

ϕ
��K

X ⊗ Y

Uϕ

�����������

where the map from X × Y into X ⊗ Y is the bilinear function that takes the pair
(x, y) ∈ X × Y to the elementary tensor x⊗ y ∈ X ⊗ Y .
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On the other hand, if we start with a linear functional U on X ⊗ Y and define
ϕU on X × Y by the formula

ϕU (x, y) = U(x⊗ y),

then it is plain and easy to see that ϕU is bilinear, thanks in large part to the
already noted bilinearity of x⊗ y.

If we step back and take stock of what’s been done, we should realize that
• starting with the bilinear ϕ and passing to the linear Uϕ, if we now look

at ϕUϕ
, we’re back at ϕ;

• starting with the linear U and passing to the bilinear ϕU , if we next look
at UϕU

, we’re back at U .
In other words, B(X, Y ) and X ⊗ Y, are naturally isomorphic with the diagram

X × Y

⊗

��

ϕ

���������������

K

X ⊗ Y

U

���������������

telling the whole story. This story is often called the universal mapping property
of tensor products.

It is noteworthy that the fact that the linear and/or bilinear functions took
values in the scalar field K was unimportant to the argument. In fact, if Z is any
linear space (over the same field as X and Y ), then the Universal Mapping Property
has a byproduct; the diagram

X × Y

⊗

��

ϕ

���������������

Z

X ⊗ Y

U

���������������

establishes a natural isomorphism between B(X, Y ; Z) and L(X×Y ; Z) with roots
in the formula

U(x⊗ y) = ϕ(x, y).
Lest there be concern of precisely what we have constructed, be assured that

the tensor product we’ve built is uniquely qualified to not only do the job we set
for it (to linearize bilinear functionals), but more so, to linearize bilinear operators.
Indeed we have the following:

Theorem. Let X and Y be linear spaces and let W be a linear space and
τ : X × Y → Z be a bilinear map with the property that for any linear space Z and
any bilinear function ϕ : X × Y → Z, there is a unique linear function L : W → Z
such that ϕ = L ◦ τ . Then there is a linear isomorphism J : X ⊗ Y →W such that
J(x⊗ y) = τ (x, y) for each x ∈ X, y ∈ Y .

In other words, X⊗Y is unique to the extent of being able to linearize bilinear
maps with minimal muss and fuss.
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Proof. First note that obviously X ⊗ Y satisfies the claims of the theorem.
To establish the claims of the theorem for an arbitrary Z, we start by noting
that the uniqueness of the linear map L for each ϕ ensures that τ (X × Y ) must
span W . If we apply the defining property of W and τ to the bilinear function
X × Y → X ⊗ Y : (x, y) �→ x ⊗ y, we find a linear function L : W → X ⊗ Y for
which L(τ (x, y)) = x⊗ y for all x ∈ X, y ∈ Y .

On the other hand, the bilinear function τ factors through X ⊗ Y to give a
linear function T : X ⊗ Y →W for which T (x, y) = τ (x, y) for all x ∈ X, y ∈ Y .

So we have for any x ∈ X, y ∈ Y that

L ◦ T (τ (x, y)) = τ (x, y)

and
L ◦ T (x⊗ y) = x⊗ y.

Since X ⊗ Y is spanned by vectors of the form x⊗ y and W is spanned by vectors
of the form τ (x, y), where x roams freely through X and y wanders around in Y ,
it must be that J = T is the required isomorphism. �

One soon realizes that a tensor product of two linear spaces has different re-
alizations. Depending on the specific component spaces, their tensor product sits
naturally inside a number of well-known linear spaces. Here is a summary of the
most important of these:

(1) X ′ ⊗ Y ′ ⊆ (X ⊗ Y )′;
(∑n

i=1 x′
i ⊗ y′

i

)
(x⊗ y) =

∑n
i=1 x′

i(x)y′
i(y),

(2) X ⊗ Y ⊆ B(X ′, Y ′);
(∑n

i=1 xi ⊗ yi

)
(x′, y′) =

∑n
i=1 x′(xi)y′(yi),

(3) X ′ ⊗ Y ′ ⊆ B(X, Y );
(∑n

i=1 x′
i ⊗ y′

i

)
(x, y) =

∑n
i=1 x′

i(x)y′
i(y),

(4) X ⊗ Y ⊆ L(X ′; Y );
(∑n

i=1 xi ⊗ yi

)
(x′) =

∑n
i=1 x′(xi)yi,

(5) X ′ ⊗ Y ′ ⊆ L(X; Y ′);
(∑n

i=1 x′
i ⊗ y′

i

)
(x) =

∑n
i=1 x′

i(x)y′
i,

(6) X ′ ⊗ Y ⊆ L(X; Y );
(∑n

i=1 x′
i ⊗ yi

)
(x) =

∑n
i=1 x′

i(x)yi.

Remarks:
• If both X and Y are finite dimensional, then all of the mentioned inclusions

are equalities. This can be easily verified by just checking the dimensions
of the spaces involved.

• It is also easy to check that the operators in L(X; Y ) in (6) that arise
from X ′ ⊗ Y are precisely the finite rank linear functions from X to Y .

1.1. Reasonable crossnorms, including the norms ∧ and ∨

1.1.1. Definitions. Let X and Y be Banach spaces (over the same scalar
field). A norm α on X ⊗ Y will be called a reasonable crossnorm if α satisfies the
following conditions:

(a) for x ∈ X and y ∈ Y ,

α(x⊗ y) ≤ ‖x‖‖y‖,
(b) for x∗ ∈ X∗ and y∗ ∈ Y ∗, x∗ ⊗ y∗ ∈ (X ⊗ Y, α)∗, and

‖x∗ ⊗ y∗‖(X⊗Y,α)∗ ≤ ‖x∗‖‖y∗‖.
First, an elementary, but important, fact that follows from the definition:
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Proposition 1.1.1. If α is a reasonable crossnorm on X ⊗Y , then α satisfies
the following conditions:

(a′) for x ∈ X and y ∈ Y ,

α(x⊗ y) = ‖x‖‖y‖,

(b′) for x∗ ∈ X∗ and y∗ ∈ Y ∗,

‖x∗ ⊗ y∗‖(X⊗Y,α)∗ = ‖x∗‖‖y∗‖.

Proof. (a′) Let x ∈ X and y ∈ Y be given. Pick x∗ ∈ BX∗ and y∗ ∈ BY ∗ so
that

x∗(x) = ‖x‖ and y∗(y) = ‖y‖.
By (b), x∗ ⊗ y∗ has norm ≤ 1 as a member of (X ⊗ Y, α)∗ and so

‖x‖‖y‖ = |x∗(x)||y∗(y)| = |(x∗ ⊗ y∗)(x⊗ y)| ≤ α(x⊗ y).

A quick look at (a) gives (a′).
(b′) Let x∗ ∈ X∗ and y∗ ∈ Y ∗ be given. Choose (xn) ⊆ SX and (yn) ⊆ SY so

that
‖x∗‖ = lim

n
|x∗(xn)| and ‖y∗‖ = lim

n
|y∗(yn)|.

By (a′), α(xn ⊗ yn) = 1 for all n; it follows from (b) that

|(x∗ ⊗ y∗)(xn ⊗ yn)| ≤ ‖x∗ ⊗ y∗‖(X⊗Y,α)∗

regardless of n. But now we see that

‖x∗‖‖y∗‖ = lim
n
|x∗(xn)| lim

n
|y∗(yn)|

= lim
n
|(x∗ ⊗ y∗)(xn ⊗ yn)|

≤ ‖x∗ ⊗ y∗‖(X⊗Y,α)∗ .

This, in light of (b), gives (b′). �

Since each u∗ ∈ X∗⊗Y ∗ is a linear combination of elementary tensors x∗⊗ y∗,
(b) above implies that each u∗ ∈ X∗ ⊗ Y ∗ is a member of (X ⊗ Y, α)∗.

Proposition 1.1.2. ‖ · ‖(X⊗Y,α)∗ restricted to X∗ ⊗ Y ∗ is a reasonable cross-
norm.

Proof. First, we note that condition (b) of the definition, as imposed to ensure
that α is a reasonable cross-norm, is precisely what’s needed to assure us that
‖.‖(X⊗Y,α)∗ satisfies (a). So all we need to do is establish (b) for ‖ · ‖(X⊗Y,α)∗ .

Let x∗∗ ∈ X∗∗ and y∗∗ ∈ Y ∗∗ be given. By Goldstine’s theorem we can find
nets (xd)d∈D and (yd′)d′∈D′ in X and Y respectively, such that for x∗ ∈ X∗ and
y∗ ∈ Y ∗ we have

x∗∗(x∗) = lim
d

x∗(xd) and y∗∗(y∗) = lim
d′

y∗(yd′),

where for d ∈ D and d′ ∈ D′,

‖xd‖ ≤ ‖x∗∗‖ and ‖yd′‖ ≤ ‖y∗∗‖.
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Take any u∗ ∈ X∗⊗ Y ∗, say u∗ =
∑

i≤n x∗
i ⊗ y∗

i . Then (b), for ‖.‖(X⊗Y,α)∗ , follows
from

|(x∗∗ ⊗ y∗∗)(u∗)| = |
∑
i≤n

x∗∗(x∗
i )y

∗∗(y∗
i )|

= |
∑
i≤n

lim
d

x∗
i (xd) lim

d′
y∗

i (yd′)|

= lim
d,d′
|
∑
i≤n

x∗
i (xd)y∗

i (yd′)|

= lim
d,d′
|(xd ⊗ yd′)(u∗)|

≤ limd,d′‖xd‖‖yd′‖‖u∗‖(X⊗Y,α)∗

≤ ‖x∗∗‖‖y∗∗‖‖u∗‖(X⊗Y,α)∗ . �
If X and Y are Banach spaces and α is a reasonable crossnorm on X⊗Y , then

we will denote by X
α
⊗ Y the completion of X ⊗ Y equipped with the norm α.

B(X, Y ; Z) will denote the (Banach) space of all bounded bilinear operators from
X × Y into the Banach space Z. If Z = K, then we’ll use the notation B(X, Y ).
L(X; Y ) is the space of all bounded linear operators from X to Y .

Theorem 1.1.3 (Grothendieck (1953/1956a), Theorem 1, p. 8). Let X and Y
be Banach spaces.

(1) On X ⊗ Y there exists a least reasonable crossnorm | · |∨ and a greatest
reasonable crossnorm | · |∧ .

(2) The norm | · |∨ is the norm induced on X ⊗ Y by viewing X ⊗ Y as a
subspace of B(X∗, Y ∗), that is, for u ∈ X ⊗ Y ,

|u|∨ = sup{|u(x∗, y∗)| : x∗ ∈ BX∗ , y∗ ∈ BY ∗}.
(3) The norm | · |∧ is the norm induced on X ⊗ Y by duality with B(X, Y ),

that is, if u ∈ X ⊗ Y , then

|u|∧ = sup{|v(u)| : v ∈ B(X, Y ), ‖v‖ ≤ 1}.
More to the point (and hinting at the use of the notation “∧”): If u ∈
X ⊗ Y , then

|u|∧ = inf
{∑

i≤n

‖xi‖‖yi‖
}

,

where the infimum is to be taken over all (finite) representations of u of
the form u =

∑
i≤n xi ⊗ yi.

Proof. First we show that the functional on X ⊗ Y given by

|u|∨ = sup{|u(x∗, y∗)| : x∗ ∈ BX∗ , y∗ ∈ BY ∗}
is a reasonable, indeed the least reasonable, crossnorm on X⊗Y . It is easy to realize
that | · |∨ is a seminorm on X ⊗ Y ; of course, |u|∨ = 0 implies that x∗ ⊗ y∗(u) = 0
for each x∗ ∈ X∗ and y∗ ∈ Y ∗ and so u = 0 as a member of X ⊗ Y ; and so | · |∨ is
a norm. Let’s look for | · |∨’s reasonability.

Let x ∈ X and y ∈ Y be given. Then

|x⊗ y|∨ = sup{|(x⊗ y)(x∗ ⊗ y∗)| : x∗ ∈ BX∗ , y∗ ∈ BY ∗}
= sup{|x∗(x)| · |y∗(y)| : x∗ ∈ BX∗ , y∗ ∈ BY ∗}
≤ ‖x‖‖y‖.

| · |∨ satisfies (a).
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Let x∗ ∈ X∗ and y∗ ∈ Y ∗ be given. Then for any u ∈ X ⊗ Y we have

|(x∗ ⊗ y∗)(u)| = ‖x∗‖‖y∗‖
∣∣∣( x∗

‖x∗‖ ⊗
y∗

‖y∗‖

)
(u)
∣∣∣

= ‖x∗‖‖y∗‖
∣∣∣u( x∗

‖x∗‖ ,
y∗

‖y∗‖

)∣∣∣
≤ ‖x∗‖‖y∗‖|u|∨,

and so we see that | · |∨ also satisfies (b). | · |∨ is a reasonable crossnorm on X ⊗Y .
Let α be any reasonable crossnorm on X ⊗Y and let u ∈ X ⊗Y . Then for any

x∗ ∈ X∗ and y∗ ∈ Y ∗ we have

‖x∗ ⊗ y∗‖(X⊗Y,α)∗ = ‖x∗‖‖y∗‖;
it follows that

|u|∨ = sup{|u(x∗, y∗)| : x∗ ∈ BX∗ , y∗ ∈ BY ∗}
= sup{|(x∗ ⊗ y∗)(u)| : x∗ ∈ BX∗ , y∗ ∈ BY ∗}
≤ α(u).

| · |∨ is the least of the reasonable crossnorms.
Next we will show that the functional | · |∧ given by

|u|∧ = sup{|v(u)| : v ∈ B(X, Y ), ‖v‖ ≤ 1}
is a reasonable crossnorm on X ⊗ Y , the greatest of all reasonable crossnorms on
X ⊗ Y , in fact.

It is easy to see that | · |∧ is a seminorm on X ⊗ Y . Since

‖x∗ ⊗ y∗‖B(X,Y ) = ‖x∗‖‖y∗‖
for any x∗ ∈ X∗ and y∗ ∈ Y ∗, we see that for u ∈ X ⊗ Y ,

|u|∨ = sup{|(x∗ ⊗ y∗)(u)| : x∗ ∈ BX∗ , y∗ ∈ BY ∗}
≤ sup{|u(v)| : v ∈ B(X, Y ), ‖v‖ ≤ 1}
= |u|∧.

It follows that | · |∧ is a norm on X ⊗Y . Moreover, if x∗ ∈ SX∗ and y∗ ∈ SY ∗ , then
for any u ∈ X ⊗ Y ,

|(x∗ ⊗ y∗)(u)| ≤ |u|∧;
from this it follows that for any x∗ ∈ X∗ and y∗ ∈ Y ∗ we have

‖x∗ ⊗ y∗‖(X⊗Y,|·|∧)∗ ≤ ‖x∗‖‖y∗‖;
(b) is satisfied by | · |∧. How about (a)? Well, take x ∈ X and y ∈ Y and note that

|x⊗ y|∧ = sup{|(x⊗ y)(v)| : v ∈ B(X, Y ), ‖v‖ ≤ 1}
= sup{|v(x, y)| : v ∈ B(X, Y ), ‖v‖ ≤ 1}
≤ sup{‖v‖‖x‖‖y‖ : v ∈ B(X, Y ), ‖v‖ ≤ 1}
= ‖x‖‖y‖.

| · |∧ is a reasonable crossnorm on X ⊗ Y .
Let α be any reasonable crossnorm on X ⊗ Y and let u ∈ X ⊗ Y . Choose u∗

from (X ⊗ Y, α)∗ so that

‖u∗‖(X⊗Y,α)∗ = 1 and u∗(u) = α(u).
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Define v ∈ B(X, Y ) by v(x, y) = u∗(x⊗ y).
Compute ‖v‖B(X,Y ) :

‖v‖ = sup{|v(x, y)| : x ∈ BX , y ∈ BY }
= sup{|u∗(x⊗ y)| : x ∈ BX , y ∈ BY }
≤ ‖u∗‖ = 1.

Therefore,
α(u) = |u∗(u)| = |v(u)| ≤ |u|∧.

| · |∧ is the greatest of all reasonable crossnorms on X ⊗ Y .
Finally, we come to the alternative description of |·|∧ given in (3). Temporarily,

let α(u) be the quantity mentioned in (3), that is, for u ∈ X ⊗ Y define

α(u) = inf
{∑

i≤n

‖xi‖‖yi‖
}

,

where the infimum is taken over all (finite) representations of u in the form

u =
∑
i≤n

xi ⊗ yi.

It is easy to guess that α is a seminorm on X ⊗ Y and even easier to see that

α(x⊗ y) ≤ ‖x‖‖y‖.

If x∗ ∈ X∗ and y∗ ∈ Y ∗ and u ∈ X ⊗ Y , say u =
∑

i≤n xi ⊗ yi, then

|x∗ ⊗ y∗(u)| =
∣∣∣∑

i≤n

x∗(xi)y∗(yi)
∣∣∣

≤
∑
i≤n

|x∗(xi)| · |y∗(yi)|

≤
∑
i≤n

‖x∗‖‖xi‖‖y∗‖‖yi‖

= ‖x∗‖‖y∗‖
∑
i≤n

‖xi‖‖yi‖;

it follows that
|(x∗ ⊗ y∗)(u)| ≤ ‖x∗‖‖y∗‖α(u),

and so α satisfies (b) in the definition of reasonable crossnorms, since plainly u = 0
whenever α(u) = 0, α is a reasonable crossnorm on X ⊗ Y and so, like all such,
must satisfy α(u) ≤ |u|∧ for all u ∈ X⊗Y . On the other hand, if u =

∑
i≤n xi⊗yi,

then

|u|∧ =
∣∣∣∑

i≤n

xi ⊗ yi

∣∣∣
∧
≤
∑
i≤n

|xi ⊗ yi|∧ =
∑
i≤n

‖xi‖‖yi‖,

which, thanks to the arbitrary representation of u in the form u =
∑

i≤n xi ⊗ yi,
gives us

|u|∧ ≤ α(u).

α = | · |∧ and the proof of our theorem is, at last, finished. �
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The norm | · |∨ or ∨ is called the injective norm and | · |∧ or ∧ is usually called

the projective norm. If X and Y are Banach spaces, then the space X
∨
⊗ Y , the

completion of X ⊗ Y with respect to | · |∨, is usually called the injective tensor

product of X and Y . Similarly, the space X
∧
⊗ Y , the completion of X ⊗ Y with

respect to | · |∧, is usually called the projective tensor product of X and Y . The
reason for this terminology will become clear soon.

Critical to the understanding of the Résumé is the realization that a reasonable
crossnorm is defined for one pair of Banach spaces at a time. While it’s true that
some reasonable crossnorms are defined in such a way that any pair of Banach
spaces fits cleanly into their definition, that is because of the special character of
those norms.

Though hardly to be counted as one of Grothendieck’s deepest results, the
following is one of his better-known (a curious happenstance to be sure):

Proposition 1.1.4 (Grothendieck (1953/1956a), Theorem 1, p. 55). Let X

and Y be any Banach spaces and u ∈ X
∧
⊗ Y . Then u is representable in the form

u =
∑∞

n=1 xn ⊗ yn and

|u|∧ = inf
{ ∞∑

n=1

‖xn‖‖yn‖ : u =
∞∑

n=1

xn ⊗ yn

}
where any finite or infinite representation of u is allowable.

Proof. Once u finds itself in X
∧
⊗ Y it is because there are un’s in X ⊗ Y

such that
|u− un|∧ < ε/2n+2 for each n

where ε > 0 is the usual preordained obstacle. We write

u1 =
∑

i≤i(1)

xi ⊗ yi

with the representation chosen so that∑
i≤i(1)

‖xi‖‖yi‖ ≤ |u1|∧ + ε/24 ≤ |u|∧ + ε/23.

For un+1 − un ∈ X ⊗ Y , we have

|un+1 − un|∧ ≤ |u− un+1|∧ + |u− un|∧ < ε/2n+4 + ε/2n+3 < ε/2n+2,

so we can write un+1 − un in the form

un+1 − un =
∑

i(n)<i≤i(n+1)

xi ⊗ yi

where the xi’s and yi’s are chosen to satisfy∑
i(n)<i≤i(n+1)

‖xi‖‖yi‖ < ε/2n+2.

∑∞
n=1 xn ⊗ yn = u1 +

∑∞
n=1(un+1 − un) converges absolutely to u and

|u|∧ ≤
∞∑

n=1

‖xn‖‖yn‖ ≤ |u|∧ + ε. �
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Concerning ∨ we take note of the frequently employed interpretation of mem-
bers of the injective tensor product as operators. To be specific:

Proposition 1.1.5. If X and Y are Banach spaces, then X∗ ∨
⊗ Y is a closed

linear subspace of the space L(X; Y ) of all bounded linear operators from X to Y .

Proof. If u ∈ X∗ ⊗ Y , then u suggests the operator ũ : X → Y is given by

ũ(x) =
∑
i≤n

x∗
i (x)yi,

where u =
∑

i≤n x∗
i ⊗ yi. It’s easy to see that‖ũ‖ = |u|∨:

|u|∨ = sup
{∣∣∣∑

i≤n

x∗∗(x∗
i )y

∗(yi)
∣∣∣ : x∗∗ ∈ BX∗∗ , y∗ ∈ BY ∗

}
= sup

{∣∣∣x∗∗
(∑

i≤n

y∗(yi)x∗
i

)∣∣∣ : x∗∗ ∈ BX∗∗ , y∗ ∈ BY ∗

}
which, thanks to Goldstine’s theorem,

= sup
{∣∣∣(∑

i≤n

y∗(yi)x∗
i

)
(x)
∣∣∣ : y∗ ∈ BY ∗ , x ∈ BX

}
= sup

{∣∣∣∑
i≤n

y∗(yi)x∗
i (x)

∣∣∣ : y∗ ∈ BY ∗ , x ∈ BX

}
= sup

{∣∣∣y∗
(∑

i≤n

x∗
i (x)yi

)∣∣∣ : y∗ ∈ BY ∗ , x ∈ BX

}
= sup{|y∗

(
ũ(x)

)
| : y∗ ∈ BY ∗ , x ∈ BX}

= sup{‖ũ(x)‖ : x ∈ BX}
= ‖ũ‖.

The map u→ ũ now extends to an isometric isomorphism of X∗ ∨
⊗ Y into L(X; Y ).

�

Also noteworthy is the fact that X∗⊗Y corresponds to the linear space F(X; Y )

of all finite rank bounded linear operators from X to Y and so X∗ ∨
⊗ Y corresponds

to the closure of F(X; Y ) in L(X; Y ); it follows that the operators ũ : X → Y that

correspond to the member u of X∗ ∨
⊗ Y are all limits in L(X; Y ) of finite rank

bounded linear operators and, as such, are compact. The intriguing possibility that

X∗ ∨
⊗ Y = K(X; Y ), the space of compact linear operators from X to Y , will be

pursued later.

1.1.2. Injectivity of ∨ and projectivity of ∧.

Proposition 1.1.6 (The injectivity of ∨). Let X and Y be Banach spaces.

If Z is a closed linear subspace of X, then Z
∨
⊗ Y is a closed linear subspace of

X
∨
⊗ Y .
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Proof. Indeed, take a vector
∑

i≤n zi ⊗ yi in Z
∨
⊗ Y and compute the norm

|
∑
i≤n

zi ⊗ yi|
Z

∨
⊗Y

= sup
{∣∣∣∑

i≤n

z∗(zi)y∗(yi)
∣∣∣ : z∗ ∈ BZ∗ , y∗ ∈ BY ∗

}
= sup

{∣∣∣z∗(∑
i≤n

y∗(yi)zi

)∣∣∣ : z∗ ∈ BZ∗ , y∗ ∈ BY ∗

}
= sup

{∥∥∥∑
i≤n

y∗(yi)zi

∥∥∥
Z

: y∗ ∈ BY ∗

}
= sup

{∥∥∥∑
i≤n

y∗(yi)zi

∥∥∥
X

: y∗ ∈ BY ∗

}
= sup

{∣∣∣x∗
(∑

i≤n

y∗(yi)zi

)∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
= sup

{∣∣∣∑
i≤n

x∗(zi)y∗(yi)
∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
= |
∑
i≤n

zi ⊗ yi|
X

∨
⊗Y

.

It is plain, and easy to see that Y
∨
⊗ Z is also a subspace of Y

∨
⊗ X. �

It is worth noting that this injective behavior of ∨ is not shared by ∧ and, in
fact, the generation of norms on tensor products that enjoy injectivity, be it on the
left or right, will be a major theme later on.

Proposition 1.1.7 (The projectivity of ∧). If Y is a closed linear subspace

of the Banach space X, then for any Banach space Z, Z
∧
⊗ (X/Y ) is a quotient of

Z
∧
⊗ X.

Proof. Let q : X → X/Y be the canonical quotient map, ε > 0 and
∧
u∈ Z

∧
⊗

(X/Y ). There are sequences (zn) and (qn) in Z and X/Y , respectively, such that
‖zn‖ ≤ 1,

∧
u=

∑
n zn ⊗ qn and

‖ ∧
u ‖

Z
∧
⊗(X/Y )

≤
∑

n

‖zn‖‖qn‖ ≤ ‖
∧
u ‖

Z
∧
⊗(X/Y )

+ ε/2.

For each n there is an xn ∈ X so that q(xn) = qn and

‖qn‖X/Y ≤ ‖xn‖ ≤ ‖qn‖X/Y + (ε/2n+1).

Look at
∑

n zn⊗ xn = u ∈ Z
∧
⊗ X. It is plain and easy to see that (idZ ⊗ q)(u) =

∧
u

and

‖ ∧
u ‖

Z
∧
⊗(X/Y )

≤ ‖u‖
Z

∧
⊗X

≤
∑

n

‖zn‖‖xn‖

≤
∑

n

‖zn‖
(
‖qn‖X/Y + ε/2n+1

)
≤
∑

n

‖zn‖‖qn‖X/Y +
∑

n

ε/2n+1

≤ ‖ ∧
u ‖

Z
∧
⊗(X/Y )

+ ε/2 + ε/2. �
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1.1.3. The universal mapping property of
∧
⊗ and the dual of X

∧
⊗ Y .

A point of fact must be raised and treated: The space (X
∧
⊗ Y )∗ is not only

naturally isometric to a subspace of B(X, Y ), these spaces are isometrically isomor-
phic. Indeed, more can be said, namely we have the following universal mapping
principle.

Theorem 1.1.8 (Grothendieck (1953/1956a), Theorem 2, p. 8′). For any Ba-

nach spaces X, Y and Z, the space L(X
∧
⊗ Y ; Z) of all bounded linear operators

from X
∧
⊗ Y to Z is isometrically isomorphic to the space B(X, Y ; Z) of all bounded

bilinear transformations taking X×Y to Z. The natural correspondence establishing
this isometric isomorphism is given by

v ∈ L(X
∧
⊗ Y ; Z) ⇔ ϕ ∈ B(X, Y ; Z)

via

v(x⊗ y) = ϕ(x, y).

Proof. From the (algebraic) definition of tensor products of vector spaces it
follows that there is a natural correspondence between L(X ⊗ Y ; Z), the space of
linear maps from X ⊗ Y to Z, and B(X, Y ; Z), the space of bilinear maps from
X × Y to Z. This correspondence is exactly that mentioned above. We only need
to show that v is bounded as a linear operator if and only if ϕ is bounded as a
bilinear transformation, with equality of norms.

Take u ∈ X ⊗ Y , say u =
∑

i≤n xi ⊗ yi. Then

‖v(u)‖ =
∥∥∥v(∑

i≤n

xi ⊗ yi

)∥∥∥ =
∥∥∥∑

i≤n

v(xi ⊗ yi)
∥∥∥ =

∥∥∥∑
i≤n

ϕ(xi, yi)
∥∥∥

≤
∑
i≤n

‖ϕ(xi, yi)‖ ≤
∑
i≤n

‖ϕ‖‖xi‖‖yi‖ = ‖ϕ‖
∑
i≤n

‖xi‖‖yi‖;

from this it follows that ‖v(u)‖ ≤ ‖ϕ‖ · |u|∧ for any u ∈ X ⊗ Y . It is a short

step from this to the conclusion that ‖v(u)‖ ≤ ‖ϕ‖ · |u|∧ for any u ∈ X
∧
⊗ Y . So

‖v‖L ≤ ‖ϕ‖B.
The reverse inequality is even easier. For x ∈ X and y ∈ Y ,

‖ϕ(x, y)‖ = ‖v(x⊗ y)‖ ≤ ‖v‖L|x⊗ y|∧ = ‖v‖L‖x‖‖y‖,

and so ‖ϕ‖B ≤ ‖v‖L. �

Corollary 1.1.9 (Grothendieck (1953/1956a), p. 8′). B(X, Y ) is isometrically

isomorphic to (X
∧
⊗ Y )∗. The correspondence between ϕ ∈ B(X, Y ) and u∗ ∈

(X
∧
⊗ Y )∗ is given by

ϕ ↔ u∗

via

ϕ(x, y) = u∗(x⊗ y).
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1.1.4. Examples: C(K)
∨
⊗ X and L1(µ)

∧
⊗ X. The following examples help

illustrate the nature of the tensor norms ∧ and ∨ as well as indicate, in part, why
they fit so easily within the landscape of Banach space theory.

Theorem 1.1.10 (Grothendieck (1953/1956a), Theorem 3, p. 21). Let X be a
Banach space.

If K is a compact Hausdorff space, then C(K)
∨
⊗ X is isometrically isomor-

phic to the space CX(K) of X-valued continuous functions on K equipped with the
supremum norm.

If µ is a measure on some measurable space (Ω, Σ), then L1(µ)
∧
⊗ X is isomet-

rically isomorphic to the space L1
X(µ) (of equivalence classes) of X-valued Bochner

µ-integrable functions defined on Ω equipped with the norm ‖f‖ =
∫
‖f(ω)‖dµ(ω).

Proof. First, we establish that C(K)
∨
⊗ X is isometrically isomorphic to

CX(K). To this end we define J : C(K)⊗X → CX(K) by (Ju)(k) =
∑

i≤n fi(k)xi

for u =
∑

i≤n fi⊗xi ∈ C(K)⊗X. The function Ju is independent of the particular
representation chosen for u. In fact, if

∑
j≤m gj ⊗ x′

j is another representation of
u, then for any x∗ ∈ X∗ we have for any k ∈ K that∑

i≤n

fi(k)x∗(xi) = (δk ⊗ x∗)(u) =
∑
j≤m

gj(k)x∗(x′
j),

so that for any x∗ ∈ X∗ we have for all k ∈ K that

x∗
(∑

i≤n

fi(k)xi

)
= x∗

(∑
j≤m

gj(k)x′
j

)
;

therefore,
∑

i≤n fi(k)xi must agree with
∑

j≤m gj(k)x′
j at each and every k in K.

J is an isometry. Indeed, if u =
∑

i≤n fi ⊗ xi is a member of C(K)⊗X, then

∥∥∥Ju
∥∥∥
∞

= sup
k∈K

∥∥∥∑
i≤n

fi(k)xi

∥∥∥
= sup

k∈K, x∗∈BX∗

∣∣∣x∗
(∑

i≤n

fi(k)xi

)∣∣∣
= sup

k∈K, x∗∈BX∗

∣∣∣∑
i≤n

fi(k)x∗(xi)
∣∣∣

= sup
x∗∈BX∗

∥∥∥∑
i≤n

x∗(xi)fi

∥∥∥
∞

= sup
x∗∈BX∗ , ν∈BC(K)∗

∣∣∣ν(∑
i≤n

x∗(xi)fi

)∣∣∣
= sup

x∗∈BX∗ , ν∈BC(K)∗

∣∣∣∑
i≤n

x∗(xi)ν(fi)
∣∣∣

= sup
x∗∈BX∗ , ν∈BC(K)∗

∣∣∣(ν ⊗ x∗)
(∑

i≤n

fi ⊗ xi

)∣∣∣
=
∣∣∣∑

i≤n

fi ⊗ xi

∣∣∣
∨
.
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J ’s range is dense, too. In fact, let f : K → X be continuous and let ε > 0
be given. f(K) is compact so there are points k1, . . . , kn ∈ K such that for any
k ∈ K there’s a j : 1 ≤ j ≤ n for which ‖f(k) − f(kj)‖ ≤ ε/2, say. Let Uj =
{k : ‖f(k)− f(kj)‖ < ε}. Then {U1, . . . , Un} is a finite open cover of K and, there-
fore, there is a continuous partition of unity {f1, . . . , fn} subordinate to {U1, . . . , Un},
that is, there are continuous real-valued functions f1, . . . , fn on K each having val-
ues in [0, 1] with

∑
i≤n fi(k) ≡ 1 and fi(k) = 0 when k is outside Ui. Define

g : K → X by g(k) =
∑

j≤n fj(k)f(kj). Plainly g = J(
∑

j≤n fj ⊗ f(kj)) and if
k ∈ K, then ∥∥∥g(k)− f(k)

∥∥∥ =
∥∥∥∑

j≤n

fj(k)f(kj)− f(k)
∥∥∥

=
∥∥∥∑

j≤n

fj(k)[f(kj)− f(k)]
∥∥∥

=
∥∥∥ ∑

j:k∈Uj

fj(k)[f(kj)− f(k)]
∥∥∥

< ε;

it follows that ‖g − f‖∞ ≤ ε and with this the density of J ’s range is plain.

We turn now to the claim about L1(µ)
∧
⊗ X. Look at the bilinear operator

J : L1(µ)×X → L1
X(µ)

defined by J(f, x) = f(·)x; plainly, ‖J‖ ≤ 1. Thanks to the Universal Mapping
Property of the projective norm, J induces a bounded linear operator, still denoted

by J , from L1(µ)
∧
⊗ X to L1

X(µ), with ‖J‖ ≤ 1. J is, in fact, an isometry. Of

course, we’ve seen that ‖Ju‖L1
X(µ) ≤ ‖u‖

L1(µ)
∧
⊗X

holds for all u ∈ L1(µ)
∧
⊗ X.

To establish J ’s claim to isometry it will suffice to show that J is an isometry

on a dense subset of L1(µ)
∧
⊗ X and that J ’s range is (at least) dense. Which

subset of L1(µ)
∧
⊗ X will do the trick? L1(µ)⊗X comes to mind, but it is too big;

in fact, the easiest subset to work with is the set of vectors of the form
∑

i≤n si⊗xi,
where si is a simple function. An easy ε

n + . . . (n − terms) . . . + ε
n = ε argument

will quickly convince anyone that this subset is indeed dense in L1(µ) ⊗ X and
what’s even lovelier is that the values J attains on this subset are also dense, this
time in L1

X(µ), consisting as they do of all the Σ-simple functions from Ω to X.
So let’s take a vector of the form

∑
i≤n si ⊗ xi in L1(µ)⊗X and note that it can

be represented in the form
∑

j≤m χAj
⊗ x′

j where A1, . . . , Am are pairwise disjoint
members of Σ; this is the form we want because∥∥J( ∑

j≤m

χAj
⊗ x′

j

)∥∥
L1

X(µ)
=
∫ ∥∥∑

j≤m

χAj
(ω)x′

j

∥∥dµ(ω)

which, thanks to the disjointness of the Aj ’s, is

=
∑
j≤m

µ(Aj)‖x′
j‖

≥
∣∣∣ ∑

j≤m

χAj
⊗ x′

j

∣∣∣
∧
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thanks again to our alternative description of | · |∧. It follows for vectors of the form
v =

∑
i≤n si ⊗ xi, that

‖Jv‖L1
X (µ) ≥ |v|∧,

and so ends the proof. �

It is noteworthy that if K1, K2 are compact Hausdorff spaces, then C(K1)
∨
⊗

C(K2) can be identified with CC(K2)(K1) by Theorem 1.1.10; but CC(K2)(K1) is
naturally identifiable with C(K1 ×K2).

Before we continue we have to introduce some notation.
A sequence (xi)i of members of a Banach space X is called absolutely p-

summable if
∑

i ‖xi‖p < ∞. We denote the space of all absolutely p-summable
sequences in X by �p(X) or �p

X and define the �p(X)-norm of (xi)i by

‖(xi)i‖�p(X) = (
∑

i

‖xi‖p)
1
p .

�p(X) is a Banach space.
The space of norm null sequences of X will be denoted by c0(X) and the space

of bounded sequences will be denoted by �∞(X). Note that both of these spaces
are Banach spaces with norm defined by ‖(xi)‖ = supi ‖xi‖.

It is straightforward to show that if 1 ≤ p <∞ and 1
p + 1

p′ = 1, then

�p(X)∗ = �p′
(X∗) (isometrically)

where the evaluation of a member of (x∗
i )i of �p′

(X∗) at a member (xi)i of �p(X)
is given by ∑

i

x∗
i (xi),

a series that is easily seen to be absolutely convergent.
We also consider the space �p

weak(X) of weakly p-summable sequences of vectors
in X; here a sequence (xn) of members of X is “weakly p-summable” if (x∗(xn))n ∈
�p for each x∗ ∈ X∗ and the norm of (xn)n is given by

‖(xn)n‖�p
weak(X) = sup

x∗∈BX∗

(∑
n

|x∗(xn)|p
) 1

p .

We’ll denote by �̌p
weak(X) the subspace of �p

weak(X), consisting of all sequences (xn)
of vectors in X, such that limn→∞ ‖(0, . . . , 0, xn, xn+1, . . .)‖�p

weak
= 0

We will frequently need to work with finite sums like (
∑

i≤n |x∗(xi)|p)
1
p and

(
∑

i≤n ‖(xn)‖p)
1
p . This in mind, we use the same notation as before:

‖(x1, . . . , xn)‖�p(X) = (
∑
i≤n

‖xi‖p)
1
p

and

‖(x1, . . . , xn)‖�p
weak(X) = sup

x∗∈BX∗

∑
i≤n

|x∗(xn)|.

If we write ‖(xn)‖�p(X) or ‖(xn)‖�p
weak(X), it will be clear from the context, whether

(xn) is a finite or an infinite sequence of vectors in a Banach space X.

Note that the space c0 is isomorphic to a C(K)-space but not isometrically
isomorphic to a C(K). It is with sheer delight that we can still say the following:



1.1. REASONABLE CROSSNORMS, INCLUDING THE NORMS ∧ AND ∨ 17

Theorem 1.1.11 (Grothendieck (1953/1956b), p. 88). For any Banach space
X we have

c0

∨
⊗ X = c0(X).

Proof. A quick look will convince you that the natural inclusion of (c0 ⊗X,
| · |∨) into �∞(X) finds itself inside c0(X) with norms preserved:

|
∑
j≤m

(λj
i )i ⊗ xj |∨ = sup

γ∈B�1 , x∗∈BX∗
|
∑
j≤n

γ(λj)x∗(xj)|

= sup
γ∈B�1 , x∗∈BX∗

|
(
γ(
∑
j≤n

x∗(xj)λ
j
i )
)
i
|

= sup
x∗∈BX∗

‖
(∑

j≤n

x∗(xj)λ
j
i

)
i
‖c0

= ‖(
∑
j≤n

λj
ixi)i‖c0(X).

Since this inclusion has dense range, the completion of (c0 ⊗X, | · |∨) is c0(X). �

It is now easy to see that if one of the coordinates is �p, then the injective tensor
product behaves well, too.

Corollary 1.1.12. Let X be any Banach space. Then �p
∨
⊗ X can be identified

with the space �̌p
weak(X).

Proof. As in the proof of Theorem 1.1.11 it is easy to see that the natural
inclusion of (�p ⊗X, | · |∨) into �p

weak(X) preserve norms:

|
∑
j≤m

(λj
i )i ⊗ xj |∨ = sup

γ∈B�q , x∗∈BX∗
|
∑
j≤n

γ(λj)x∗(xj)| (
1
p

+
1
q

= 1)

= sup
γ∈B�q , x∗∈BX∗

|
(
γ(
∑
j≤n

x∗(xj)λ
j
i )
)
i
|

= sup
x∗∈BX∗

‖
(∑

j≤n

x∗(xj)λ
j
i

)
i
‖�p

= ‖(
∑
j≤n

λj
ixi)i‖�p

weak(X).

It is easy to see that �̌p
weak(X) is contained in the range of the natural inclusion

of �p
∨
⊗ X into �p

weak(X) and to check that under this natural inclusion the sequences

in �̌p
weak(X) can be approximated by members of �p⊗X. Hence �̌p

weak(X) ⊆ �p
∨
⊗ X.

To see that �̌p
weak(X) = �p

∨
⊗ X one only needs to verify that the elementary tensors

λ⊗ x in �p ⊗X are indeed contained in �̌p
weak(X). �

There is another interesting interpretation of �p
∨
⊗ X. First take note of the

following very classical result: If 1 < p < ∞ and if 1
p + 1

p′ = 1, the space L(�p′
; X)

of bounded linear operators from �p to X is isometrically isomorphic to the space
�p
weak(X). The proof is straightforward once it is realized that an operator u ∈
L(�p′

; X) corresponds to the sequence (xi)i that is weakly p-summable via

u(ei) = xi.
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It is plain that under this isometry, the compact operators (which can be approxi-
mated by operators of finite rank in this case) correspond to sequences in �̌p

weak(X).

So �p
∨
⊗ X is isometrically isomorphic to the space K(�p′

, X) of compact operators
from �p′

to X.
Also note that for p = 1 we have that the space L(c0; X) of bounded linear

operators from c0 to X is isometrically isomorphic to the space �1weak(X), of weakly

summable sequences of vectors in X and that �1
∨
⊗ X is isometrically isomorphic

to the space K(c0, X) of compact operators from c0 to X.
So for p = 1 we have yet another interpretation of the injective tensor product.

The well-known Orlicz-Pettis theorem says that in Banach spaces the classes of
weakly subseries convergent and norm unconditionally convergent series coincide.
So we can rephrase the previous corollary:

Corollary 1.1.13 (Grothendieck (1953/1956b), Proposition 3, p. 88). Let

X be any Banach space. Then �1
∨
⊗ X can be identified with the space uc(X) of

unconditionally summable sequences in X, where the norm of an (xn)n≤1 ∈ uc(X)
is given by

‖(xn)‖ = sup
x∗∈BX∗

∑
n

|x∗xn|.

It should be noted that this corollary actually says that uc(X) = �̌1weak(X).

Note: There are many misconceptions about the structure of tensor products.
With the Universal Mapping Property and other basics about the projective tensor
product, we’re able to issue fair warnings about the linear topological structure of
the projective product at least, as well as, illustrate how to compute some norms.
We start with the following simply established, yet instructive, fact.

Proposition 1.1.14. The closed linear span of (en ⊗ en)n≥1 in �p
∧
⊗ �p is

isometric to �1, whenever 1 ≤ p ≤ 2.

Proof. Suppose u =
∑

i≤n aiei ⊗ ei ∈ �p ⊗ �p; of course, ‖u‖∧ ≤
∑

i≤n |ai|.
On the other hand, if we define ϕu ∈ B(�p, �p) by ϕu(x, y) =

∑
i≤n sign(ai)xiyi,

then ‖ϕu‖ ≤ 1, and since ϕu achieves the value 1 on B�p×B�p , ‖ϕu‖ = 1. It follows
that ∑

i≤n

|ai| = |
∑
i≤n

aiϕu(ei, ei)| = |ϕu(u)| ≤ ‖u‖∧,

and that’s all that’s needed. �

A quick corollary follows:

Corollary 1.1.15. If 1 < p ≤ 2, then �p
∧
⊗ �p is not reflexive.

Proposition 1.1.16. The span of (en⊗ en)n≥1 in �p
∧
⊗ �p is �

p
2 , if 2 < p < ∞.

Proof. We use the Rademacher functions and their orthonormal character:
consider any u =

∑
i≤n aiei ⊗ ei ∈ �p ⊗ �p; rewrite u:

u =
∫ 1

0

(
∑
i≤n

sign(ai)|ai|
1
2 ri(t)ei)⊗ (

∑
i≤n

|ai|
1
2 ri(t)ei)dt.
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Then

‖u‖∧ = ‖
∫ 1

0

(
∑
i≤n

sign(ai)|ai|
1
2 ri(t)ei)⊗ (

∑
i≤n

|ai|
1
2 ri(t)ei)dt‖∧

≤
∫ 1

0

‖
∑
i≤n

sign(ai)|ai|
1
2 ri(t)ei‖�p‖

∑
i≤n

|ai|
1
2 ri(t)ei‖�pdt

≤ sup
0≤t≤1

‖
∑
i≤n

sign(ai)|ai|
1
2 ri(t)ei‖�p‖

∑
i≤n

|ai|
1
2 ri(t)ei‖�p

≤ (
∑
i≤n

|ai|
p
2 )

1
p (
∑
i≤n

|ai|
p
2 )

1
p

= ‖(ai)i≤n‖�
p
2
.

To see the reverse, we call on the Universal Mapping Property and argue by duality:
look at the bilinear functional ϕu on �∞ given by

ϕu(x, y) =
∑
i≤n

sign(ai)|ai|
p
2−1xiyi.

Notice that ϕu(u) =
∑

i≤n |ai|
p
2 . Further, if r, s, t ≥ 1 and 1

r + 1
s + 1

t = 1, then

|ϕu(x, y)| ≤ ‖(sign(ai)|ai|
p
2−1)‖r‖x‖s‖y‖t.

Letting r, s, t take on special values will finish the task at hand. Which values?
Well, let s and t be p, respectively, and let r be what is left over, namely, r = p

p−2 .

The result is that ∑
i≤n

|ai|
p
2 = |ϕu(u)| ≤ ‖u‖∧‖ϕu‖.

But

‖ϕu‖ ≤ ‖(sign(ai)|ai|
p
2−1)‖ p

p−2

= (
∑
i≤n

|ai|
p
2 )

p−2
p .

Putting this all on one line shows∑
i≤n

|ai|
p
2 ≤ ‖u‖∧(

∑
i≤n

|ai|
p
2 )1−

2
p .

A bit of long division tells the tale:

‖(ai)‖p/2 ≤ ‖u‖∧.

�
Finally,

Proposition 1.1.17. The closed linear span of (en ⊗ en) in �∞
∧
⊗ �∞ is c0.

Proof. Let (ai) ∈ c0. Then, looking at

u =
∑
i≤m

ai(ei ⊗ ei) =
∑
i≤n

(aiei)⊗ ei

=
∫ 1

0

(
∑
i≤n

airi(t)ei)⊗ (
∑
i≤n

ri(t)ei)dt,
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we quickly see that, as above,

‖u‖∧ ≤ sup
0≤t≤1

(‖
∑
i≤n

airi(t)ei‖∞ · ‖
∑
i≤n

ri(t)ei‖∞)

= ‖(ai)‖∞.

If we choose an index i0 so that ‖(ai)‖∞ = |ai0 | and look at the bilinear functional
ϕu on �∞ × �∞ given by

ϕu(x, y) = sign(aio
)xi0yi0 ,

then we can quickly verify that ‖ϕu‖ = 1 and that

ϕu(u) = |ai0 | = ‖(ai)‖∞.

By duality,
‖u‖∧ ≥ ‖(ai)‖∞.

Case closed. �

To summarize, the closed linear span Dp of the sequence (en⊗en)n≥1 in �p
∧
⊗ �p

is isometrically isomorphic to⎧⎨⎩
�1, for 1 ≤ p ≤ 2,

�
p
2 , for 2 ≤ p <∞,

c0, for p = ∞.

Next, we give an application of the second part of Theorem 1.1.10; we’ll com-

pute the closed linear space of the sequences (rn⊗rn)n≥1 in L1(0, 1)
∧
⊗ Lp(0, 1), 1 ≤

p ≤ ∞.
First:

Proposition 1.1.18. If 1 ≤ p <∞, then the closed linear span of (rn⊗rn)n≥1

in L1(0, 1)
∧
⊗ Lp(0, 1) is isomorphic to �2.

Proof. We start with the identification of L1(0, 1)
∧
⊗ Lp(0, 1) with L1

Lp(0,1)(0, 1)
and look at

∑
i≤n airi ⊗ ri, therein; using Khinchin’s inequalities, we see that

‖
∑
i≤n

airi ⊗ ri‖
L1(0,1)

∧
⊗Lp(0,1)

=
∫ 1

0

‖
∑
i≤n

airi(t)ri‖Lp(0,1)dt

=
∫ 1

0

(∫ 1

0

|
∑
i≤n

airi(t)ri(s)|pds
) 1

p

dt

�
∫ 1

0

∫ 1

0

|
∑
i≤n

airi(t)ri(s)|dsdt

=
∫ 1

0

∫ 1

0

|
∑
i≤n

airi(s)ri(t)|dtds

=
∫ 1

0

|
∑
i≤n

airi(t)|dt

� ‖(ai)‖�2 ,

where “�” indicates equivalence up to universal constants. �
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For p =∞ the computation is even easier:

Proposition 1.1.19. The closed linear span of (rn ⊗ rn)n≥1 in L1(0, 1)
∧
⊗

L∞(0, 1) is isomorphic (isometric in the real case) to �1.

Proof. Again we use of the identification of L1(0, 1)
∧
⊗L∞(0, 1) with L1

L∞(0,1)(0, 1)
to see that

‖
∑
i≤n

airi ⊗ ri‖
L1(0,1)

∧
⊗L∞(0,1)

=
∫ 1

0

‖
∑
i≤n

airi(s)ri‖L∞(0,1)ds

�
∫ 1

0

‖(airi(s))i≤n‖�1ds

=
∫ 1

0

∑
i≤n

|airi(s)|ds =
∑
i≤n

|ai|.

�

We’ve seen that L1(µ)
∧
⊗ X can be identified with L1

X(µ) (Theorem 1.1.10); it

follows that �1
∧
⊗ X is nothing else than �1X . Moreover, �1

∨
⊗ X can be identified

with the space uc(X) of unconditionally summable sequences in X. Further, the

structure of �p
∧
⊗ �p is possessed of subtleties galore. How do �p

∧
⊗ X and �p

∨
⊗ X

compare if 1 < p? Here’s a first response.

Theorem 1.1.20 (Grothendieck (1953/1956b), Proposition 4, p. 89). Let X be
any Banach space. If 1 < p <∞, then

�p
∧
⊗ X ⊆ �p

X ⊆ �p
∨
⊗ X,

with all inclusions having norm = 1.

Comment: After the results of Section 1.4, we’ll see that each inclusion is injective
as well, thanks to �p’s accessibility.

Proof. For λ = (λi)i ∈ �p and x ∈ X denote by λ · x the sequence (λix)i of
vectors in X; plainly, ‖λ · x‖p is ≤ ‖λ‖p‖x‖. Hence the natural map (λ, x) → λ · x
is a bilinear operator from �p × X into �p

X of norm ≤ 1. The Universal Mapping

Property assures us of the existence of a (natural) linear operator from �p
∧
⊗ X into

�p
X having norm ≤ 1.

It is plain that if (xn)n ∈ �p
X , then

∑
i |x∗xi|p <∞ for each x∗ ∈ X∗ and that

sup
x∗∈B∗

(
∑

i

|x∗(xi)|p)
1
p <∞,

too; in fact, for any x∗ ∈ X∗ we have

(
∑

i

|x∗(xi)|p)
1
p ≤ (

∑
i

‖xi‖p)
1
p ‖x∗‖.

To pin things down, notice that this inequality holds on �p ⊗ X, a dense linear
subspace of �p

X . So for (xi) ∈ �p ⊗X, we have

sup
x∗∈BX∗

(
∑

i

|x∗xi|p)
1
p ≤ (

∑
i

‖xi‖p)
1
p .
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However, the quantity on the left is easily seen to be the �p
∨
⊗ X-norm of any

(xi)i ∈ �p ⊗X and so the inclusion �p
X ↪→ �p

∨
⊗ X is of norm ≤ 1. �

1.1.5. Integral bilinear forms and the dual of X
∨
⊗ Y . Our identification

of (X
∧
⊗ Y )∗ with the space B(X, Y ) of all bounded bilinear functionals on X × Y

begs the question: What is the dual of X
∨
⊗ Y ? Naturally, we look among the

bounded bilinear functionals on X × Y to sort out the dual of X
∨
⊗ Y ; if we follow

Grothendieck’s excellent directions ([Grothendieck (1953/1956a), pp. 19 and 20]),
here’s where we are led.

Theorem 1.1.21. A bounded bilinear functional ϕ on X×Y defines a member

of (X
∨
⊗ Y )∗ if and only if ϕ is of integral type, that is, there is a regular Borel

measure µ on the compact space (BX∗ , weak∗)× (BY ∗ , weak∗) such that for x ∈ X
and y ∈ Y we have

ϕ(x, y) =
∫

BX∗×BY ∗

x∗(x)y∗(y)dµ(x∗, y∗).

Proof. By the very definition of |u|∨,

|u|∨ = sup{|u(x∗, y∗)| : x∗ ∈ BX∗ , y∗ ∈ BY ∗};
so it is plain that (X ⊗ Y, | · |∨) is isometrically isomorphic to a linear subspace
of the Banach space C

(
(BX∗ , weak∗)× (BY ∗ , weak∗)

)
of continuous scalar-valued

functions defined on the compact space (BX∗ , weak∗) × (BY ∗ , weak∗). Therefore,

X
∨
⊗ Y , the completion of (X ⊗ Y, | · |∨), is also isometrically isomorphic to a

(closed) subspace of the space C
(
(BX∗ , weak∗)× (BY ∗ , weak∗)

)
. If ϕ is a member

of (X
∨
⊗ Y )∗, then the Hahn-Banach theorem allows us to extend ϕ to a member

ϕ̃ of C
(
(BX∗ , weak∗) × (BY ∗ , weak∗)

)∗
without changing norms. Of course, the

Riesz theorem now comes into play; the result is a regular Borel measure µ on the
space (BX∗ , weak∗)× (BY ∗ , weak∗) such that

ϕ̃(f) =
∫

BX∗×BY ∗

f(x∗, y∗)dµ(x∗, y∗)

for all f ∈ C
(
(BX∗ , weak∗)× (BY ∗ , weak∗)

)
. Restricting our attention to members

x⊗ y of X ⊗ Y and taking into account ϕ̃’s action on x⊗ y we see that

ϕ(x, y) =
∫

BX∗×BY ∗

x∗(x)y∗(y)dµ(x∗, y∗)

holds for any x ∈ X and y ∈ Y . �

It is worth noting that in the above argument, ‖ϕ‖ and ‖µ‖ coincide.

Naturally, the bilinear functionals found in (X
∨
⊗ Y )∗ are called integral. The

space of all such bilinear forms is denoted by B∧(X, Y ) and the norm on this space
is called the integral norm and will be denoted by ‖.‖∧.

A slightly different view of Grothendieck’s description of (X
∨
⊗ Y )∗ will find

use later.
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Theorem 1.1.22 (Grothendieck (1953/1956a), Theorem 1, p. 20). Let ϕ be a
bilinear functional on X × Y . For ϕ to be integral with ‖ϕ‖∧ ≤ 1 it is necessary
and sufficient that there is a compact Hausdorff space K, a regular Borel probability
measure µ on K, bounded linear operators a : X → L∞(µ), b : Y → L∞(µ) of norm
≤ 1 such that for x ∈ X and y ∈ Y ,

ϕ(x, y) =
∫

K

ax(k)by(k)dµ(k).

Proof. We start by embedding X
∨
⊗ Y into C(K), where K is the compact

Hausdorff space (BX∗ , weak∗) × (BY ∗ , weak∗); after all, the injective norm was
defined for just such a role:

|u|∨ = sup
{
|(x∗ ⊗ y∗)(u)| : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
= ‖u(·)‖

C
(
(BX∗ ,weak∗)×(BY ∗ ,weak∗)

).
If ϕ ∈ (X

∨
⊗ Y )∗, then ϕ extends to a ν ∈ C(K)∗ where ‖ν‖ = ‖ϕ‖∧. Of course, ν

is a regular Borel measure on K; let µ ∈ C(K)∗ be given by

µ(·) =
|ν|(·)
‖ν‖

and let f ∈ L∞(µ) denote dν
dµ . Notice that ‖f‖L∞(µ) = ‖ν‖ = ‖ϕ‖∧. If we assume

‖ϕ‖∧ ≤ 1 and define a : X → L∞(µ) by ax(x∗, y∗) = x∗(x) and b : Y → L∞(µ) by
by(x∗, y∗) = f(x∗, y∗)y∗(y), then plainly ‖a‖, ‖b‖ ≤ 1 and∫

K

ax(k)by(k)dµ(k) =
∫

K

x∗(x)f(x∗, y∗)y∗(y)dµ(x∗, y∗)

=
∫

K

x∗(x)y∗(y)f(x∗, y∗)dµ(x∗, y∗)

=
∫

K

x∗(x)y∗(y)dν(x∗, y∗)

= ϕ(x, y).

Conversely, suppose ϕ is represented in the form described in the theorem. Let ψ be
the bilinear continuous form on L∞(µ)× L∞(µ) given by ψ(f, g) =

∫
fgdµ. Since

ϕ = ψ◦(a⊗b), to show ‖ϕ‖∧ ≤ 1 it will be enough to show that ‖ψ‖∧ ≤ 1. Let S be
the Stone space of the Boolean algebra of equivalence classes of µ-measurable sets
mod µ-null sets. C(S) is isometrically isomorphic to L∞(µ), thanks to the Stone-
Weierstrass theorem; indeed, if given a µ-measurable set E we denote by Ẽ the
clopen subset of the totally disconnected compact Hausdorff space S corresponding
to E’s equivalence class under the Stone isomorphism, then the map χE → χẼ

is quickly seen to extend to a linear isometry of L∞(µ) with a dense subalgebra
(and hence all) of C(S). Along with this isometry, which we’ll call σ, comes an
induced measure µ̃ whose defining property is µ̃(Ẽ) = µ(E). If we consider ρ ∈
B
(
C(S), C(S)

)
given by ρ(f, g) =

∫
fg dµ̃, then it is easily seen and plain that

ψ = ρ ◦ (σ ⊗ σ) and so, to show that ‖ψ‖∧ ≤ 1, it is enough to see our way to
‖ρ‖∧ ≤ 1. Now, let s ∈ S and denote by δs the point mass at s : δs(f) = f(s) for
f ∈ C(S). Consider the function G : S → B∧

(
C(S), C(S)

)
given by G(s) = δs⊗δs.
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Notice that ‖δs ⊗ δs‖∧ = 1 and that G is continuous from S into
(
C(S)

∨
⊗ C(S)

)∗
where the latter is equipped with the weak∗ topology. Therefore, G is Gelfand
integrable! Moreover, G’s Gelfand integral is nothing else than ρ! What is more,

‖ρ‖∧ =
∥∥Gelfand

∫
G(s)dµ̃(s)

∥∥
∧ ≤ ‖µ̃‖ = ‖µ‖ ≤ 1.

What more can we say? �
In our proof we made use of a powerful abstract tool for averaging: the Gelfand

integral . Let (Ω, Σ, µ) be a finite measure space and X a Banach space. A function
f : Ω → X∗ is Gelfand integrable if f(·)(x) ∈ L1(µ) for each x ∈ X; in this case,
for each E ∈ Σ there is x∗

E ∈ X∗ such that for any x ∈ X,

x∗
E(x) =

∫
E

f(ω)(x)dµ(ω).

x∗
E is called the Gelfand integral of f over E. If Ω is a compact Haussdorff space

and Σ is the Borel σ-field, then any f : Ω → X∗ that is weak∗-continuous is Gelfand
integrable with respect to any µ ∈ C(Ω)∗.

Note: The above representation of the dual of X
∨
⊗ Y pays handsome dividends

that we’ll appreciate in later chapters. Already we can understand weak conver-

gence for sequences in X
∨
⊗ Y ; in this we follow Dan Lewis’s lead.

Theorem 1.1.23 (Lewis (1973)). Let (un) be a sequence in X
∨
⊗ Y . Then (un)

is weakly Cauchy if and only if for each x∗ ∈ X∗ and each y∗ ∈ Y ∗ the sequence

(x∗ ⊗ y∗)(un)n is convergent. (un) is weakly convergent to u0 ∈ X
∨
⊗ Y precisely

when given x∗ ∈ X∗ and y∗ ∈ Y ∗, then (x∗ ⊗ y∗)(u0) = limn(x∗ ⊗ y∗)(un).

Proof. We’ll show that (un) is weakly null if and only if for each x∗ ∈ X∗ and
each y∗ ∈ Y ∗, we have limn(x∗⊗y∗)(un) = 0. On the one hand, we see that x∗⊗y∗ is

a member of (X
∨
⊗ Y )∗ and so whenever (un) is weakly null, limn(x∗⊗y∗)(un) = 0;

on the other hand, it is precisely the point of this theorem to show that one can test

the weak nullity of (un) simply by checking the un’s against ϕ’s from (X
∨
⊗ Y )∗ of

this very elementary and simple form. So let’s get on with the meatier aspect of
this theorem of Dan Lewis.

Suppose limn(x∗ ⊗ y∗)(un) = 0 for each x∗ ∈ X∗ and each y∗ ∈ Y ∗. Let

ϕ ∈ (X
∨
⊗ Y )∗. Then ϕ is of integral type so there is a regular Borel measure µ on

the space ((BX∗ , weak∗)× (BY ∗ , weak∗)) such that for u ∈ X
∨
⊗ Y we have

ϕ(u) =
∫

BX∗×BY ∗

(x∗ ⊗ y∗)(u)dµ(x∗, y∗).

Viewing the un’s as members of C
(
(BX∗ , weak∗) × (BY ∗ , weak∗)

)
, they are

uniformly bounded — this follows from the Banach-Steinhaus theorem. The un’s
also converge pointwise to zero on BX∗ ×BY ∗ — this is our hypothesis. Therefore,
by Lebesgue’s bounded convergence theorem we have

lim
n

ϕ(un) = lim
n

∫
BX∗×BY ∗

un(x∗, y∗)dµ(x∗, y∗)

= 0.

(un) is weakly null in X
∨
⊗ Y .
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The first assertion of the theorem now follows from what we’ve proved if we
reflect on a very old pearl of wisdom muttered by Pe�lczynski to the effect that
the sequence (zn) in a Banach space Z is weakly Cauchy if and only if given any
increasing sequences (kn) and (jn) of positive integers, the sequence (zkn

− zjn
)

is weakly null. The second assertion is easy; after all, a sequence (zn) converges
weakly to z0 if and only if (zn − z0) is weakly null. �

1.2. Definition of ⊗-norms

We will denote by F the class of all finite dimensional Banach spaces over the
scalar field K(= R or C). If X is a Banach space, then F(X) will denote the set
of all finite dimensional subspaces of X. Here we identify isometrically isomorphic
spaces.

A tensor norm (⊗-norm, for short) α is a method of ascribing to any pair (E, F )
of objects from F a reasonable crossnorm α for E ⊗ F in such a way that should
E, F, G, H ∈ F and u : E → F and v : G→ H be (bounded) linear operators, then
u⊗ v : E ⊗G → F ⊗H has bound

‖u⊗ v‖
L(E

α
⊗G;F

α
⊗H)

≤ ‖u‖‖v‖.

Here we hasten to point out that when E, F ∈ F and α is a ⊗-norm, then (E⊗F, α)
is a finite dimensional normed linear space and so is complete already; consequently,
E

α
⊗ F = (E ⊗ F, α).

Our old standbys ∨ and ∧ provide us with important examples of ⊗-norms.

Proposition 1.2.1. ∨ and ∧ are ⊗-norms.

Proof. We only need to check for the uniform crossnorm property.
Let u : E → F and v : G → H be linear operators where E, F, G, H ∈ F . Let∑

i≤n

ei ⊗ gi be a typical member of E ⊗G and compute:

|(u⊗ v)(
∑
i≤n

ei ⊗ gi)|
F

∨
⊗H

= sup
f∗∈BF∗ , h∗∈BH∗

{|(f∗ ⊗ h∗)((u⊗ v)(
∑
i≤n

ei ⊗ gi))|}

= sup
f∗∈BF∗ , h∗∈BH∗

{|(f∗ ⊗ h∗)(
∑
i≤n

u(ei)⊗ v(gi))|}

= sup
f∗∈BF∗ , h∗∈BH∗

{|
∑
i≤n

f∗(u(ei))h∗(v(gi))|}

= sup
f∗∈BF∗ , h∗∈BH∗

{|
∑
i≤n

(u∗f∗)(ei)(v∗h∗)(gi)|}

which, with the usual apologies offered in case either u or v is = 0, is

= sup
f∗∈BF∗ , h∗∈BH∗

{‖u∗‖‖v∗‖|
∑
i≤n

(
u∗

‖u∗‖f∗)(ei)(
v∗

‖v∗‖h∗)(gi)|}

= ‖u∗‖‖v∗‖ sup
f∗∈BF∗ , h∗∈BH∗

{|
∑
i≤n

(
u∗f∗

‖u∗‖ )(ei)(
v∗h∗

‖v∗‖ )(gi)|}
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≤ ‖u‖‖v‖ sup
e∗∈BE∗ , g∗∈BG∗

{|
∑
i≤n

e∗(ei)g∗(gi)|}

= ‖u‖‖v‖|
∑
i≤n

ei ⊗ gi|∨.

Okay?
The computation for ∧ is even quicker. If E, F, G, H ∈ F and u : E → F and

v : G → H are the objects in question, then for a typical
∑
i≤n

ei ⊗ gi ∈ E ⊗ G we

have

|(u⊗ v)(
∑
i≤n

ei ⊗ gi)|∧ = |
∑
i≤n

(uei)⊗ (vgi)|∧

≤
∑
i≤n

|u(ei)⊗ v(gi)|∧

=
∑
i≤n

‖u(ei)‖‖v(gi)‖

≤ ‖u‖‖v‖
∑
i≤n

‖ei‖‖gi‖.

It follows that

|(u⊗ v)(
∑
i≤n

ei ⊗ gi)|∧ ≤ ‖u‖‖v‖|
∑
i≤n

ei ⊗ gi|∧,

as wanted. �

1.2.1. Fundamental operations on ⊗-norms. If G and H are vector spaces,
then the map t : G⊗H → H⊗G is the isomorphism generated by t(g⊗h) = h⊗g.
For u ∈ G⊗H we denote by tu the image t(u) in H ⊗G.

Suppose α is a ⊗-norm. We define the tα of α as follows: If E, F ∈ F , then
for u ∈ E ⊗ F ,

tα(u) = α(tu).

Proposition 1.2.2. If α is a ⊗-norm, then so, too, is tα.

Proof. It is plain that tα is a norm on E ⊗F whenever E, F ∈ F . Moreover,
if e ∈ E and f ∈ F , then

tα(e⊗ f) = α(f ⊗ e) = ‖f‖‖e‖.
Further, if e∗ ∈ E∗ and f∗ ∈ F ∗, then

‖e∗ ⊗ f∗‖(E⊗F,tα)∗ = sup
tα(u)≤1

|(e∗ ⊗ f∗)(u)|

= sup
α(v)≤1, v∈F⊗E

|(e∗ ⊗ f∗)(tv)|

= sup
α(v)≤1, v∈F⊗E

|(f∗ ⊗ e∗)(v)|

= ‖f∗ ⊗ e∗‖(F⊗E,α)∗

= ‖f∗‖‖e∗‖,

so tα is a reasonable crossnorm on any E ⊗ F with E, F ∈ F .
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Let E, F, G, H ∈ F and consider linear operators u : E → F, v : G → H.
Picture as such:

(E ⊗G,t α)
u⊗v

��

t

��

(F ⊗H,t α)

t

��
(G⊗ E, α)

v⊗u
��

��

(H ⊗ F, α)

��

t, regardless of which side you put him on, is destined to be an isometry in this
scene. It follows that

‖u⊗ v‖
L(E

tα
⊗G;F

tα
⊗H)

= ‖v ⊗ u‖
L(G

α
⊗E;H

α
⊗F )

≤ ‖v‖‖u‖.
tα is a ⊗-norm. �

Notice that if α is a ⊗-norm, then t(tα) = α, since for any E, F ∈ F and any
u ∈ E ⊗ F we have t(tα)(u) = tα(tu) = α(ttu) = α(u).

Plainly, t∧ = ∧ and t∨ = ∨.
Now let α be a ⊗-norm and let E, F ∈ F . Of course, E ⊗ F is algebraically

identical to (E∗ α
⊗ F ∗)∗! This is due to the finite dimensionality of all spaces

involved. Take a u ∈ E ⊗ F and define the dual norm α∗ by α∗(u) = ‖u‖
(E∗

α
⊗F∗)∗

.

It should be noted that for E, F ∈ F , the equality E
α∗

⊗ F = (E∗ α
⊗ F ∗)∗ holds

isometrically by definition.

Proposition 1.2.3. If α is a ⊗-norm, then so, too, is α∗.

Proof. We saw in Proposition 1.1.2 that α∗ acts reasonably well. Let’s check
the all-important uniform crossnorm condition. Let E, F, G, H ∈ F and suppose
u : E → F and v : G → H are linear operators. In diagrammatic fashion:

E
α∗

⊗ G
u⊗v

��

��

F
α∗

⊗ H

(E∗ α
⊗ G∗)∗

(u∗⊗v∗)∗
��

��

(F ∗ α
⊗ H∗)∗

��

where the arrows � on the left and right denote the defining isometries that gave us
our very definition of α∗. Of course, the isometric behavior of these vertical arrows
allows us to conclude that

‖u⊗ v‖
L(E

α∗
⊗G;F

α∗
⊗H)

= ‖(u∗ ⊗ v∗)∗‖
L((E∗

α
⊗G∗)∗;(F∗

α
⊗H∗)∗)

= ‖u∗ ⊗ v∗‖
L(F∗

α
⊗H∗;E∗

α
⊗G∗)

≤ ‖u∗‖‖v∗‖ = ‖u‖‖v‖.

�

A few easily established facts about α∗:

Proposition 1.2.4. If α is a ⊗-norm, then (α∗)∗ = α.
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Proof. Indeed, if E, F ∈ F , then

E
(α∗)∗

⊗ F = (E∗ α∗

⊗ F ∗)∗ = (E∗∗ α
⊗ F ∗∗)∗∗ = E

α
⊗ F,

thanks to the omnipresence of finite dimensional Banach spaces. �
Proposition 1.2.5. If α is a ⊗-norm, then (tα)∗ = t(α∗).

Proof. In fact, if E, F ∈ F , then

E
t(α∗)
⊗ F = F

α∗

⊗ E = (F ∗ α
⊗ E∗)∗ = (E∗

tα
⊗ F ∗)∗ = E

(tα)∗

⊗ F.

�
Finally, adding one new fact and summarizing already-gained information we

have:

Theorem 1.2.6. ∨ is the least and ∧ the greatest of the ⊗-norms. ∨ and ∧
are symmetric (equal to their own transpose) and each is the other’s dual: ∧∗ = ∨
and ∨∗ = ∧.

Proof. Only the claim on dual norms need be verified and it is an easy con-
sequence of the following natural isometric inclusions for any Banach spaces X, Y :

X
∨
⊗ Y ↪→ B(X∗, Y ∗) = (X∗ ∧

⊗ Y ∗)∗;

recall these as a part of the lesson of Section 1.1. In case E and F are members of F ,

all in sight are finite dimensional and so are equal if you look at E
∨
⊗ F , B(E∗, F ∗),

(E∗ ∧
⊗ F ∗)∗. It follows that ∨ = ∧∗, and from this we see that ∨∗ = ∧∗∗ = ∧. �
Last, but not least, of the fundamental operations on ⊗-norms to be considered

at this juncture is the contragradient :

Proposition 1.2.7. If α is a tensor norm, then so, too, is the contragradient
∨
α of α given by

∨
α= t(α∗) = (tα)∗.

1.2.2. Order relations among ⊗-norms. Let α and β be ⊗-norms. We say
α ≤ β if for any E, F ∈ F and any u ∈ E ⊗ F we have α(u) ≤ β(u).

Obviously, we have:

Proposition 1.2.8. If α and β are ⊗-norms, then α ≤ β holds if and only if
tα ≤ tβ.

Not quite so obvious but easily established is:

Proposition 1.2.9. If α and β are ⊗-norms, then α ≤ β holds if and only if
β∗ ≤ α∗ .

Proof. Suppose α ≤ β and E, F ∈ F . Take u ∈ E ⊗ F and compute:

β∗(u) = ‖u‖
(E∗

β
⊗F∗)∗

= sup{|u(v)| : v ∈ E∗ ⊗ F ∗, β(v) ≤ 1}
≤ sup{|u(v)| : v ∈ E∗ ⊗ F ∗, α(v) ≤ 1}
= ‖u‖

(E∗
α
⊗F∗)∗

= α∗(u).

�
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Suppose {αi : i ∈ I} is a family of ⊗-norms. For E, F ∈ F and u ∈ E ⊗ F
consider

(∨αi)(u) ≡ sup
i∈I

αi(u) ≤ |u|∧.

It is plain that ∨αi is a norm on E⊗F and naturally satisfies (∨αi)(e⊗f) = ‖e‖‖f‖
whenever e ∈ E and f ∈ F . If i ∈ I and e∗ ∈ E∗ and f∗ ∈ F ∗, then

|e∗ ⊗ f∗(u)| ≤ ‖e∗ ⊗ f∗‖
(E

αi
⊗F )∗

αi(u) ≤ ‖e∗‖‖f∗‖(∨αi)(u),

for any u ∈ E ⊗ F ; it follows that

‖e∗ ⊗ f∗‖(E⊗F,∨αi)∗ ≤ ‖e∗‖‖f∗‖

and ∨αi is a reasonable crossnorm on E⊗F. ∨αi is now a candidate for⊗-normhood;
after all, E, F ∈ F were arbitrary and we formed ∨αi to be a reasonable crossnorm
on E⊗F . All that’s left is to show that ∨αi inherits the uniform crossnorm property
from its generating family {αi : i ∈ I}. This, too, is easy: Let E, F, G, H ∈ F and
u : E → F, v : G → H be linear operators; then, if w ∈ E ⊗G, we have

(∨αi)(u⊗ v)(w) = sup
i∈I

αi(u⊗ v)(w)

≤ sup
i∈I
‖u‖‖v‖αi(w)

= ‖u‖‖v‖ sup
i∈I

αi(w)

= ‖u‖(∨αi)(w).

Since α ≤ β holds for the tensor norms α, β precisely when β∗ ≤ α∗ and since
α∗∗ = α for any tensor norm α, we’ve really just shown that

Proposition 1.2.10. The tensor norms constitute a complete lattice.

1.3. Extension of ⊗-norms to spaces of infinite dimensions

In this section we will show how tensor norms generate reasonable uniform
crossnorms on tensor products of arbitrary Banach spaces. We will further investi-
gate the effects of the fundamental operations on ⊗-norms and in so doing we will
come naturally to the question of accessibility.

Let α be a ⊗-norm and let X and Y be arbitrary Banach spaces. It is plain
that whenever E ∈ F(X) and F ∈ F(Y ), then E ⊗ F is a member of F(X ⊗ Y );
furthermore, it is true that

X ⊗ Y =
⋃

E∈F(X) F∈F(Y )

E ⊗ F.

Suppose we direct pairs (E, F ) from F(X)× F(Y ) by (E, F ) ≤ (Ẽ, F̃ ) if E ⊆ Ẽ

and F ⊆ F̃ . Should (Ẽ, F̃ ) be any pair following (E, F ) in our direction and if
we denote by i(E, Ẽ) the natural inclusion E ↪→ Ẽ of E into Ẽ, then whenever
u ∈ X ⊗ Y finds itself in E ⊗ F we would have

|u|
Ẽ

α
⊗F̃

= |(i(E, Ẽ) ⊗ i(F, F̃ ))(u)|
Ẽ

α
⊗F̃

≤ |u|
E

α
⊗F

,
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where |u|
E

α
⊗F

denotes the α-norm of u in (E
α
⊗ F, α). Consequently, the net

(|u|
E

α
⊗F

) is a non-increasing monotone net and so for u ∈ X⊗Y we can define α(u)
unambiguously by

α(u) = inf{|u|
E

α
⊗F

: E ∈ F(X), F ∈ F(Y ), u ∈ E ⊗ F}(1)

which agrees with
lim

(E,F )∈F(X)×F(Y ), u∈E⊗F
|u|

E
α
⊗F

.

A small but important observation is the fact that should X and Y be themselves
finite dimensional, then α as defined above is just what it ought to be: α.

By ∨’s injectivity it is easy to see that the above definition (1) is also consistent
in case α = ∨.

Before we show that definition (1) is also consistent in case α = ∧, we first
prove the following:

Proposition 1.3.1. Regardless of the Banach spaces X and Y , the functional
α so-determined as in (1) above is a reasonable crossnorm on X ⊗ Y .

Proof. It is plain that α(λu) = |λ|α(u) for any scalar λ and any u ∈ X ⊗ Y .
Suppose u, v ∈ X ⊗ Y . Then we can find E ∈ F(X) and F ∈ F(Y ) such that
u, v ∈ E ⊗ F . Once this is done, whenever (Ẽ, F̃ ) ∈ F(X) × F(Y ) follows (E, F )
in the direction given F(X)×F(Y ), we have u, v ∈ Ẽ ⊗ F̃ and

|u + v|
Ẽ

α
⊗F̃

≤ |u|
Ẽ

α
⊗F̃

+ |v|
Ẽ

α
⊗F̃

.

From this we see that α(u + v) ≤ α(u) + α(v), hence α is a seminorm on X ⊗ Y . If
u ∈ X ⊗ Y , then there are E ∈ F(X) and F ∈ F(Y ) so that u ∈ E ⊗ F ; of course,
|u|∨ ≤ |u|

E
α
⊗F

holds for any such (E, F ) ∈ F(X)× F(Y ), where, as we’ve already
noted, |u|∨ is quite well defined and unambiguous. It follows that |u|∨ ≤ α(u) and
α is, in fact, a norm on X ⊗ Y . Free-of-charge we also obtain that if x∗ ∈ X∗ and
y∗ ∈ Y ∗, then for any u ∈ X ⊗ Y ,

|(x∗ ⊗ y∗)(u)| ≤ ‖x∗‖‖y∗‖|u|∨ ≤ ‖x∗‖‖y∗‖α(u).

α satisfies condition (b) required for its reasonability. α also satisfies (a) since given
x ∈ X and y ∈ Y we obviously have |x⊗y|

E
α
⊗F

= ‖x‖‖y‖ once E ∈ F(X), F ∈ F(Y )
and x ∈ E, y ∈ F ; this triviality also passes its blessings to α to give α(x ⊗ y) ≤
‖x‖‖y‖, regardless of x ∈ X and y ∈ Y . �

To see that definition (1) above is also unambiguous in case of ∧, we temporarily
let | · |′∧ denote the functional on X ⊗ Y defined via the procedure of this section;
| · |∧ still denotes the reasonable crossnorm ∧ defined as in section 1.1. Of course,
if u ∈ X ⊗ Y , then |u|′∧ ≤ |u|∧; after all, | · |∧ is the greatest of the reasonable
crossnorms on X ⊗ Y and | · |′∧ is just one in the crowd of reasonable crossnorms.
On the other hand, if u ∈ X ⊗ Y and E ∈ F(X), F ∈ F(Y ) are such that u ∈ E⊗F ,
then supposing u =

∑
i≤n ei ⊗ fi, ei ∈ E, fi ∈ F , we have |u|∧ ≤

∑
i≤n ‖ei‖‖fi‖.

But now using the fact that the representation u =
∑

i≤n ei⊗fi is arbitrary among
those representations of u as a member of E ⊗ F we see that |u|∧ ≤ |u|

E
∧
⊗F

. Of
course, once this is seen to be true, we know that |u|∧ ≤ |u|′∧ is not too far behind
and so | · |∧ = | · |′∧ as anticipated.

Yet another property inherited by the reasonable crossnorms generated by a
⊗-norm α is the following uniformity:
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Proposition 1.3.2. If X1, X2, Y1 and Y2 are Banach spaces, u1 : X1 → Y1 and
u2 : X2 → Y2 are bounded linear operators, then u1 ⊗ u2 defines a bounded linear
operator from X1

α
⊗ X2 to Y1

α
⊗ Y2 with norm ≤ ‖u1‖‖u2‖.

Proof. Key to establishing this uniformity of α is estimating α((u1⊗u2)(w))
for a typical w ∈ X1 ⊗ X2. To this end, suppose the old faithful ε > 0 has been
given to us and we choose E ∈ F(X1) and F ∈ F(X2) such that w ∈ E ⊗ F and∣∣∣w|

E
α
⊗F

≤ (1 + ε)α(w).

Then

α((u1 ⊗ u2)(w)) ≤ |(u1 ⊗ u2)(w)|
u1(E)

α
⊗u2(F )

≤ ‖u1‖‖u2‖ · |w|
E

α
⊗F

≤ ‖u1‖‖u2‖(1 + ε)α(w).

It follows that u1⊗u2 is a bounded linear operator from (X1⊗X2, α) to (Y1⊗Y2, α)
with norm ≤ ‖u1‖u2‖; u1⊗u2 has but one bounded linear extension to an operator

that takes X1

α
⊗ X2 to Y1

α
⊗ Y2, an extension of the same norm as u1 ⊗ u2. �

It is plain that tα extends to X⊗Y in the most straightforward way: tα(u) =
α( tu), for u ∈ X ⊗ Y . One needs only to look at what happens in those E ⊗ F ’s
where E ∈ F(X), F ∈ F(Y ) and u ∈ E ⊗ F to see this as a triviality.

Of more concern is how (or whether) to use duality in our extension procedure.
The issue is a deep one. Recall that if E, F ∈ F , then

E
α
⊗ F = E

(α∗)∗

⊗ F ↪→ (E∗ α∗

⊗ F ∗)∗

with all three spaces being, in fact, equal and isometric, thanks to the finite and

equal dimensionality of everything in sight. This says that E
α
⊗ F and E∗ α∗

⊗ F ∗

are in perfect duality.
In infinite dimensions this duality is not so secure; indeed, some very subtle

issues are involved. Suppose X and Y are infinite dimensional Banach spaces and
let α be any ⊗-norm. As a subspace of (X ⊗Y, α)∗, the space X∗⊗Y ∗ inherits the
norm ‖ · ‖(X⊗Y,α)∗ ; in section 1.1 this norm was already used in the definition of a
reasonable crossnorm. However, the ⊗-norm α∗ is also well defined on X∗ ⊗ Y ∗.
So for u ∈ X∗⊗Y ∗, both ‖u‖(X⊗Y,α)∗ and α∗(u) make perfect sense and may even
coincide; but maybe not! In the case of our two old friends ∧ and ∨, it will become
clear that we always have

‖u‖(X⊗Y,∧)∗ = |u|∧∗ = |u|∨;

but there are very delicate situations in which ‖·‖(X⊗Y,∨)∗ and |u|∧ do not coincide.
Be forewarned that the equality ‖u‖(X⊗Y,∨)∗ = |u|∧ is intimately related to questions
of accessibility (also known as approximability) and as such goes right to the heart
and soul of structural aspects of Banach space theory.

The best that can generally be said is this:

Proposition 1.3.3. If u ∈ X ⊗ Y , then u acts in a natural continuous linear
manner on (X∗ ⊗ Y ∗, α∗) with ‖u‖(X∗⊗Y ∗,α∗)∗ ≤ α(u).

(Of course, this inequality, unsatisfactory though it may be to some, extends

to any member u of X
α
⊗ Y viewed as a member of (X∗ α∗

⊗ Y ∗)∗.)
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Proof. Take a u∗ ∈ X∗ ⊗ Y ∗ for which α∗(u∗) < 1. Remember how α∗ is
defined: from α∗’s values on E⊗F ’s where E ∈ F(X∗) and F ∈ F(Y ∗). So choose
an E ∈ F(X∗) and an F ∈ F(Y ∗) such that u∗ ∈ E ⊗ F and |u∗|

E
α∗
⊗F

< 1, too.

Let’s estimate |u(u∗)|; after all, we want to find out how big a functional u is on
(X∗ ⊗ Y ∗, α∗), don’t we?

|u(u∗)| = |(u|E⊗F )(u∗)| ≤ ‖(u |E⊗F )‖(E⊗F,α∗)∗ .

But E ∈ F(X∗), and F ∈ F(Y ∗), so if we let

E⊥ = {x ∈ X : e(x) = 0, for all e ∈ E}
and

F⊥ = {y ∈ Y : f(y) = 0, for all y ∈ F},
then E∗ = X/E⊥ and F ∗ = Y/F⊥. If we let

qE⊥ : X →→ X/E⊥ = E∗ and qF⊥ : Y →→ Y/F⊥ = F ∗

be the canonical quotient maps, then ‖qE⊥‖, ‖qF⊥‖ ≤ 1 and, because the adjoint
of qE⊥ is the natural inclusion of E into X∗ and the adjoint of qF⊥ is the natural
inclusion of F into Y ∗,

u |E⊗F = (qE⊥ ⊗ qF⊥)(u).
So

|u(u∗)| ≤ ‖u |E⊗F ‖(E⊗F,α∗)∗

= ‖(qE⊥ ⊗ qF⊥)(u)‖(E⊗F,α∗)∗

= ‖(qE⊥ ⊗ qF⊥)(u)‖
(E

α∗
⊗F )∗

= |(qE⊥ ⊗ qF⊥)(u)|
E∗

α
⊗F∗

≤ ‖qE⊥‖‖qF⊥‖‖u‖(X⊗Y,α)

≤ α(u),

thanks to the uniformity enjoyed by the extension of ⊗-norms.
The claim is established. �
1.3.1. Metric accessibility and accessibility. We now introduce the no-

tion of a bilinear form having type α, a notion which will be studied in detail later.
If α is a ⊗-norm and X and Y are Banach spaces, then there is a canonical in-

clusion (not necessarily an injection) of X
∧
⊗ Y into X

α
⊗ Y of norm at most one;

after all, α ≤ | · |∧. The adjoint of the inclusion is a mapping taking (X
α
⊗ Y )∗

into (X
∧
⊗ Y )∗ = B(X, Y ), a linear operator of norm at most one. It follows that

members ϕ ∈ (X
α
⊗ Y )∗ may be viewed as continuous bilinear forms on X × Y

via the formula ϕ(x, y) = evaluation of ϕ, as a member of (X
α
⊗ Y )∗, at x ⊗ y.

Preliminaries aside, we say that ϕ ∈ B(X, Y ) is of type α if ϕ is in the image of

(X
α∗

⊗ Y )∗ under the canonical inclusion

(X
α∗

⊗ Y )∗ ↪→ B(X, Y )

discussed above (albeit in the guise of α). The space of all (bounded) bilinear forms
on X × Y of type α will be denoted by Bα(X, Y ); the α-norm of a ϕ ∈ Bα(X, Y ),

written ‖ϕ‖α, is the norm of ϕ as a member of (X
α∗

⊗ Y )∗.
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Of course, X
α
⊗ Y is naturally included in (X∗ α∗

⊗ Y ∗)∗ = Bα(X∗, Y ∗) — this
is exactly what we’ve shown above; this natural inclusion

X
α
⊗ Y ↪→ Bα(X∗, Y ∗)

has norm at most one.
When is this map an isometric isomorphism? We set forth two conditions of a

fairly general nature that ensure this map is an isometry.
F(X; X) denotes the space of finite rank bounded operators on X.
We say that the Banach space X is metrically accessible or has the “metric

approximation property” if for any E ∈ F(X) and any ε > 0 there is a finite rank
operator from X to X with norm ≤ 1 + ε, which agrees with the identity on E.

The ⊗-norm α is a metrically accessible tensor norm if the inclusion

X
α
⊗ Y ↪→ Bα(X∗, Y ∗)

is an isometry provided one of X, Y is finite dimensional.

Proposition 1.3.4. The canonical inclusion X
α
⊗ Y ↪→ Bα(X∗, Y ∗) is an

isometric injection in case
(a) both X and Y are metrically accessible, or
(b) α is metrically accessible and either X or Y is metrically accessible.

Proof. (a) Suppose u =
∑

i≤n xi ⊗ yi ∈ X ⊗ Y . Let ε > 0 be given. Since X

and Y are metrically accessible we can find vX ∈ F(X; X) and vY ∈ F(Y ; Y ) such
that

‖vX‖, ‖vY ‖ ≤
√

1 + ε,

vX |span{x1,...,xn}= idspan{x1,...,xn} and vY |span{y1,...,yn}= idspan{y1,...,yn}.

Let E = vX(X) and F = vY (Y ). Of course, u ∈ E
α
⊗ F , so there is a

ϕ ∈ (E
α
⊗ F )∗(= Bα∗

(E, F )) = E∗ α∗

⊗ F ∗

such that
|ϕ|

E∗
α∗
⊗F∗

= 1 and ϕ(u) = |u|
E

α
⊗F

.

Let wX : X → E be vX ’s astriction and wY : Y → F be vY ’s astriction; of course,
w∗

X : E∗ → X∗ and w∗
Y : F ∗ → Y ∗. Ready to compute?

|u|
X

α
⊗Y

≤ |u|
E

α
⊗F

= |ϕ(u)|
= |ϕ((wX ⊗ wY )(u))|
= |(w∗

X ⊗ w∗
Y )(ϕ)(u)|

≤ ‖(w∗
X ⊗ w∗

Y )(ϕ)‖
X∗

α∗
⊗Y ∗

‖u‖
(X∗

α∗
⊗Y ∗)∗

≤ ‖w∗
X‖‖w∗

Y ‖|ϕ|
E∗

α∗
⊗F∗

‖u‖α

= ‖wX‖‖wY ‖‖u‖α

= ‖vX‖‖vY ‖‖u‖α

≤ (1 + ε)‖u‖α.



34 1. BASICS ON TENSOR NORMS

Since ε > 0 is arbitrary, |u|
X

α
⊗Y

≤ ‖u‖α and so the canonical inclusion of (X⊗Y, α)
into Bα(X∗, Y ∗) is an isometry which a fortiori extends to an isometric inclusion

of X
α
⊗ Y into Bα(X∗, Y ∗).

(b) Suppose X is metrically accessible; the proof in case Y is guilty of metric
accessibility follows a similar pattern of deceit. Take u ∈ X ⊗ Y with α(u) > 1.
Write u =

∑
i≤n xi⊗yi and let ε > 0 be < α(u)−1. Since X is metrically accessible,

there is a vX ∈ F(X; X) with ‖vX‖ ≤ 1, and such that ‖vXxi−xi‖ is small enough

for i = 1, . . . , n. Let E be the linear span of vX(X)∪{x1, . . . , xn}. Then u ∈ E
α
⊗ Y

and

|u− (vX ⊗ idY )(u)|
E

α
⊗Y

= |
∑
i≤n

[
xi − vX(xi)

]
⊗ yi|

E
α
⊗Y

≤
∑
i≤n

‖xi − vX(xi)‖‖yi‖

< ε < α(u)− 1;

that’s how small we want ‖xi − vX(xi)‖ to be!
But |u|

E
α
⊗Y

≥ α(u) > 1, so

|(vX ⊗ idY )(u)|
E

α
⊗Y

≥ |u|
E

α
⊗Y
− |u− (vX ⊗ idY )(u)|

E
α
⊗Y

> |u|
E

α
⊗Y
− (α(u)− 1)

= ||u|
E

α
⊗Y
− α(u)|+ 1

≥ 1.

Since α is metrically accessible and E is finite dimensional, the inclusion

E
α
⊗ Y ↪→ Bα(E∗, Y ∗) = (E∗ α∗

⊗ Y ∗)∗

is an isometric embedding. By considering (vX ⊗ idY )(u) as a bounded linear

functional on E∗ α∗

⊗ Y ∗, we can find ϕ ∈ E∗ ⊗ Y ∗ such that

|ϕ|
E∗

α∗
⊗Y ∗

= 1 and |(vX ⊗ idY )(u)(ϕ)| > 1.

To be quite careful let wX be vX ’s astriction and consider

ψ = (w∗
X ⊗ id∗Y )(ϕ) ∈ X∗ α∗

⊗ Y ∗;

notice that

|ψ|
X∗

α∗
⊗Y ∗

≤ ‖w∗
X‖‖id∗Y ‖|ϕ|

E∗
α∗
⊗Y ∗

≤ 1.

Writing ϕ in the form
∑

j≤m e∗j ⊗ y∗
j we can compute |u(ψ)| :

|u(ψ)| = |(
∑
i≤n

xi ⊗ yi)
[
(w∗

X ⊗ id∗Y )(
∑
j≤m

e∗j ⊗ y∗
j )
]
|

= |(
∑
i≤n

xi ⊗ yi)(
∑
j≤m

w∗
X(e∗j )⊗ y∗

j )|

= |
∑
i≤n

∑
j≤m

w∗
X(e∗j )(xi)y∗

j (yi)|
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= |
∑
i≤n

∑
j≤m

e∗j (vX(xi))y∗
j (yi)|

= |(vX ⊗ idY )(
∑
i≤n

xi ⊗ yi)(
∑
j≤m

e∗j ⊗ y∗
j )|

= |(vX ⊗ idY )(u)(ϕ)| > 1.

We have found that u, viewed as a member of (X∗ α∗

⊗ Y ∗)∗ = Bα(X∗, Y ∗), has
a value at ψ ∈ B

X∗
α∗
⊗Y ∗

exceeding 1. Therefore, u, viewed as a member of

(X∗ α∗

⊗ Y ∗)∗ = Bα(X∗, Y ∗), has norm > 1, too. This says that if |u|(X⊗Y,α) > 1,
then ‖u‖α > 1. But |u|(X⊗Y,α) ≤ 1 implies ‖u‖α ≤ 1. It follows that the natural
inclusion of (X ⊗ Y, α) into Bα(X∗, Y ∗) is an isometry and, as before, extends to

an isometric inclusion of X
α
⊗ Y into Bα(X∗, Y ∗). �

Examples: Our old standbys ∧ and ∨ are metrically accessible. For ∨ this is just

X
∨
⊗ Y ↪→ B(X∗, Y ∗) = (X∗ ∧

⊗ Y ∗)∗

with the first inclusion an isometry by the definition of ∨ and the equality is a
consequence of the universal mapping property enjoyed by ∧.

The situation for ∧ is a bit touchier. Suppose E ∈ F and Y is any Banach

space. Then the canonical inclusion of E∗ ∨
⊗ Y ∗ into B(E, Y ) is isometric because

for u∗ ∈ E∗ ⊗ Y ∗ we have

|u∗|∨ = sup{|(e∗∗ ⊗ y∗∗)(u∗)| : e∗∗ ∈ BE∗∗ , y∗∗ ∈ BY ∗∗}
= sup{|(e⊗ y)(u∗)| : e ∈ BE , y ∈ BY },

thanks to Goldstine’s theorem. Of course, this last quantity is just ‖u∗‖B(E,Y ). Ac-

tually, E∗ ∨
⊗ Y ∗ = B(E, Y )! Indeed, if we take (ei, e

∗
i )i≤n, a basis (with appropriate

coefficient functionals) for E, and, let ϕ ∈ B(E, Y ), then for any e ∈ E and y ∈ Y
we have

ϕ(e, y) = ϕ(
∑
i≤n

e∗i (e)ei, y) =
∑
i≤n

e∗i (e)ϕ(ei, y) = (
∑
i≤n

e∗i ⊗ ϕei
)(e⊗ y),

where ϕei
∈ Y ∗ is defined, as you might expect, by ϕei

(y) = ϕ(ei, y), and so ϕ’s
action is the same as that of

∑
i≤n e∗i ⊗ ϕei

, a member of E∗ ⊗ Y ∗. This in hand,
we now see that all relations in the following are isometries:

E
∧
⊗ Y ↪→ (E

∧
⊗ Y )∗∗ = B(E, Y )∗ = (E∗ ∨

⊗ Y ∗)∗,

and this is just the metric accessibility of ∧.
One important consequence of ∧’s metric accessibility is this:

Proposition 1.3.5. If X or Y is metrically accessible, then the canonical in-

clusion of X
∧
⊗ Y into B∧(X∗, Y ∗) is an isometry.

Here we see an important point of demarcation between ∨ and ∧. ∨ is so

accessible that it matters not what the spaces X and Y are, X
∨
⊗ Y is canonically

isometric to a subspace of (X∗ ∧
⊗ Y ∗)∗; for ∧ the isometric character of the canonical

inclusion of X
∧
⊗ Y in (X∗ ∨

⊗ Y ∗)∗ is essentially dependent on either X or Y being
metrically accessible.
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It might not be a bad idea to understand the notion of a Banach space’s metric
accessibility a bit better; here’s a first pass at such an understanding.

The rest of the notes of this section are from Grothendieck (1955a).

Theorem 1.3.6 (Grothendieck (1955a), Proposition 39, p. 179). Let X be a
Banach space. Then the following are equivalent statements concerning X:
(MA1) Given a compact subset K of X and an ε > 0, there is a finite rank operator

u0 : X → X such that ‖u0‖ ≤ 1 and ‖x− u0x‖ ≤ ε for all x ∈ K.
(MA2) Every bounded linear operator u : X → X is in the closure of the subset

‖u‖BF(X;X) of F(X; X) of bounded linear operators having finite rank, rel-
ative to the topology of uniform convergence on norm compact subsets of
X.

(MA3) For every Banach space Y , every bounded linear operator v : X → Y is in
the closure of the subset ‖v‖BF(X;Y ) of bounded linear operators from X
to Y having finite rank, relative to the topology of uniform convergence on
norm compact subsets of X.

(MA4) For every Banach space Z, every bounded linear operator w : Z → X is in
the closure of the subset ‖w‖BF(Z;X) of the set F(Z; X) of bounded linear
operators from Z to X having finite rank, relative to the topology of uniform
convergence on norm compact subsets of Z.

(MA5) X is metrically accessible.

As an aside: In the Résumé it is condition (MA1) that is given as the definition of
metric accessibility (that is, X has the metric approximation property).

Proof. (MA1) implies (MA2). Let u : X → X be a bounded linear operator,
K a compact subset of X, and ε > 0 given. Choose δ > 0 so that ‖ux‖ ≤ ε whenever
‖x‖ ≤ δ. By (MA1) there is a finite rank linear operator u0 : X → X with ‖u0‖ ≤ 1
such that for any x ∈ K, ‖x− u0x‖ ≤ δ. It follows that for any x ∈ K,

‖ux− uu0x‖ = ‖u(x− u0x)‖ ≤ ε and ‖uu0‖ ≤ ‖u‖‖u0‖ ≤ ‖u‖.
uu0 is a finite rank operator.

(MA2) plainly implies (MA1) but (MA2) also implies (MA3). Let Y be any
Banach space and let v : X → Y be a bounded linear operator. Define the operator
V : L(X; X) → L(X; Y ) by V (u) = v ◦ u. Plainly, V is a bounded linear operator
of norm ‖v‖; V is also continuous when both L(X; X) and L(X; Y ) are equipped
with the locally convex linear topologies of uniform convergence on compact subsets
of X. What’s more, V takes finite rank operators to finite rank operators. So if
K ⊆ X is compact and we approximate idX uniformly on K by a finite rank
operator u of norm ≤ 1, V (u) will approximate V (idX) = v uniformly on K, V (u)
is a finite rank operator and ‖V (u)‖ ≤ ‖V ‖‖u‖ ≤ ‖v‖. Okay?

(MA3) plainly implies (MA2). That (MA2) implies (MA4) is a more or less
obvious modification of the pattern used for (MA2) implies (MA3) and, again,
(MA4) plainly implies (MA2).

(MA1) implies (MA5). If E ∈ F(X), then there is a projection p : X → X so
that p(X) = E, that is, there is a bounded linear operator p : X → X such that
p |E= idE ; this follows from the Hahn-Banach theorem. BE is compact so there is a
u ∈ F(X; X) such that ‖u‖ ≤ 1 and ‖x−u(x)‖ is “small” as long as x ∈ BE . Look
at v = idX − p + up : v |E= u |E and ‖v− idX‖ = ‖p− up‖ ≤ ‖p‖‖(id− u) |pX ‖, a
quantity that is < 1 if we choose “small” to be the right thing. This says that v−1
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exists and has norm close to 1; since v |E= u |E the operator w = v−1 ◦u has finite
rank and is bounded, linear, acts like the identity on E, and has ‖w‖ ≤ ‖v−1‖‖u‖
a number close to 1.

(MA5) implies (MA1). Note that if K is a compact subset of X, then there are
points x1, . . . , xn in K so that each element of K is close to one of the xi’s. Let
E be the linear span of x1, . . . , xn and pick w ∈ F(X; X) so that w |E= id |E and
‖w‖ is not much bigger than 1. Let u = w

‖w‖ : u is a finite rank operator which
displaces members of K by just a little bit and ‖u‖ ≤ 1. �

Some examples of Banach spaces that are metrically accessible are clearly called
for.

Proposition 1.3.7. If 1 ≤ p <∞, then Lp(µ) is metrically accessible.

Proof. In fact, we know that if f1, . . . , fn ∈ Lp(µ) and ε > 0 is given then we
can find a measurable set E so that µ(E) < ∞, each of the fi’s is bounded on E
and in fact

∫
Ec |fi|p ≤ ( ε

2 )p, say. If µ(E) = 0, we set uε = 0; otherwise, decompose
E into disjoint µ-measurable sets E1, . . . , Ek(ε) so selected as to ensure none of the
fi’s vary more than ε/2 on any of the Ej ’s, and define uε by

uεf =
∑

j≤k(ε)

∫
Ej

fdµ

µ(Ej)
χEj

.

Whatever E’s disposition, each uε : Lp(µ) → Lp(µ) is a finite rank linear oper-
ator with ‖uε‖ ≤ 1 satisfying ‖fi − uεfi‖p ≤ ε for i = 1, . . . , n. Lp(µ)’s metric
accessibility follows easily from this by a simple total boundedness argument. �

Proposition 1.3.8. If K is a compact Hausdorff space, then C(K) is metrically
accessible.

Proof. Again, let f1, . . . , fn ∈ C(K) and ε > 0 be given. Define F : K → �∞n
by F (k) = (f1(k), . . . , fn(k)); F is continuous and so F (K) is compact; therefore,
there exist points k1, . . . , km ∈ K such that for any k ∈ K there is a j : 1 ≤ j ≤ m
for which |fi(k)− fi(kj)| ≤ ε/2 for i = 1, . . . , n. Let

Uj = {k : |fi(k)− fi(kj)| < ε, i = 1, . . . , n};

U1, . . . , Um constitute an open cover of K and so we can find a continuous partition
of unity g1, . . . , gm subordinate to U1, . . . , Um. Define uε : C(K)→ C(K) by

(uεf)(k) =
∑
j≤m

gj(k)f(kj).

It is easy to see that each uε is a finite rank linear operator with ‖uε‖ ≤ 1 for which
‖fi − uεfi‖ < ε for i = 1, . . . , n. �

A condition essentially weaker than that of metric accessibility is accessibility:
A Banach space X is accessible or has the “approximation property” if given a
compact set K in X and an ε > 0, then there is a finite rank bounded linear operator
u : X → X such that for any x ∈ K, ‖x− ux‖ ≤ ε. To prove a characterization of
this condition, we follow the style of the proof employed in the previous theorem.
We first prove some very useful lemmas of Grothendieck, the first of which will also
find use in the next section:
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Lemma 1.3.9. If K is a compact subset of the Banach space X, then there is
a norm null sequence (xn) in X such that K ⊆ co{xn}.

Proof. K compact implies 2K is compact. So 2K has a finite 1
4 -net and hence

there are x1, . . . , xn(1) ∈ 2K such that each point of 2K is within 1
4 of an xi. Each

of the sets

2K ∩
{

x : ‖x− x1‖ ≤
1
4

}
, . . . , 2K ∩

{
x : ‖x− xn(1)‖ ≤

1
4

}
are compact. So[

2K ∩
{

x : ‖x− x1‖ ≤
1
4

}]
− x1, . . . ,

[
2K ∩

{
x : ‖x− xn(1)‖ ≤

1
4

}]
− xn(1)

are compact and

K2 =
n(1)⋃
i=1

([
2K ∩

{
x : ‖x− xi‖ ≤

1
4

}]
− xi

)
is compact.

Again, K2 compact implies 2K2 is compact. So 2K2 has a finite 1
16 net and

hence there are xn(1)+1, . . . , xn(2) ∈ 2K2 such that each point of 2K2 is within 1
16

of an xi. Each of the sets

2K2 ∩
{

x : ‖x− xn(1)+1‖ ≤
1
16

}
, . . . , 2K2 ∩

{
x : ‖x− xn(2)‖ ≤

1
16

}
are compact. So[

2K2 ∩
{

x : ‖x− xn(1)+1‖ ≤
1
16

}]
− xn(1)+1, . . .

. . . ,

[
2K2 ∩

{
x : ‖x− xn(2)‖ ≤

1
16

}]
− xn(2)

are compact and

K3 =
n(2)⋃

i=n(1)+1

([
2K2 ∩

{
x : ‖x− xi‖ ≤

1
16

}]
− xi

)
is compact.

Continue in this way; the result is a sequence of (Kn) of compact sets such that

lim
n

sup
x∈Kn

‖x‖ = 0.

Further, if x ∈ K, then 2x ∈ 2K and so there is an i(1) : 1 ≤ i(1) ≤ n(1)
such that 2x − xi(1) ∈ K2. But 2x − xi(1) ∈ K2 implies 2(2x − xi(1)) ∈ 2K2

and so there is an i(2) : n(1) < i(2) ≤ n(2) and 2(2x − xi(1)) − xi(2) ∈ K3.
Again, 4x− 2xi(1) − xi(2) ∈ K3 implies 2(4x− 2xi(1) − xi(2)) ∈ 2K3, so there is an
i(3) : n(2) < i(3) ≤ n(3) and 2(4x − 2xi(1) − xi(2)) − xi(3) ∈ K4. Continue. On
suitable rearrangements we find for any n > 1 that

x−
xi(1)

2
−

xi(2)

4
− · · · −

xi(n)

2n
∈ 1

2n
Kn+1.

It follows that if we let x0 = 0, then x ∈ co {xn : n ≥ 0} where ‖xn‖ → 0. �
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We rush to recall that an old result of Mazur says that both the closed convex
hull and the closed absolutely convex hull of a (relatively) norm compact subset of
a Banach space are compact.

Lemma 1.3.10. Let K0 be a compact set in a Banach space X. Then there exists
an absolutely convex compact set K ⊆ X, with K0 a compact set in XK . Here XK

is the span of K with K as the closed unit ball.

Proof. From Lemma 1.3.9 it follows that there is a null sequence (xn) in X

such that K0 ⊆ abs conv hull{xn}
‖·‖

. Put yn = 1√
‖xn‖

xn and let

K = abs conv hull{yn}
‖·‖

.

Since (yn) is again a null sequence, by Mazur’s theorem K is compact in X by
Lemma 1.3.9.

It follows that ‖xn‖XK
=
∥∥√‖xn‖yn

∥∥
XK

≤
√
‖xn‖ and so (xn) is a null

sequence in XK . Hence abs conv hull{xn}
‖·‖XK is a compact set in XK , thanks

again to Mazur. However, for relatively compact sets in XK the ‖ · ‖-closure and
the ‖ · ‖XK

-closure coincide. So K0 is compact in XK . �

Now, we’re ready to prove the promised characterization:

Theorem 1.3.11. The following statements about a Banach space X are equiv-
alent:
(A) X is accessible.
(A1) L(X; X) is the closure of F(X; X) relative to the topology of uniform con-

vergence on (relatively) norm-compact subsets in X.
(A2) For each Banach space Y , L(X; Y ) is the closure of F(X; Y ), relative to the

topology of uniform convergence on (relatively) norm-compact subsets in X.
(A3) For every Banach space Z, L(Z; X) is the closure of F(Z; X), relative to

the topology of uniform convergence on (relatively) norm-compact subsets in
Z.

(A4) For every Banach space Y , Y
∨
⊗ X can be identified with the space of weak∗-

to weak-continuous, compact linear operators from Y ∗ to X.
(A5) For every Banach space Z, Z∗⊗X is dense in the space K(Z; X) of compact

linear operators from Z to X.

Proof. (A) implies (A1): Suppose X is accessible. Let v : X → X be a
continuous linear operator, K a compact subset of X, and ε > 0 given. Choose
δ > 0 so that if ‖x‖ ≤ δ, then ‖v(x)‖ ≤ ε. Since X is accessible, there is a finite
rank bounded linear operator u : X → X, say u =

∑
i≤n x∗

i ⊗ xi, such that for any
x ∈ K, ‖x− ux‖ ≤ δ. This being done, should x ∈ K, then

‖v(x)−
(∑

i≤n

x∗
i ⊗ v(xi)

)
(x)‖ = ‖v(x)−

∑
i≤n

x∗
i (x)v(xi)‖

= ‖v(x−
∑
i≤n

x∗
i (x)xi)‖

= ‖v(x− u(x))‖ ≤ ε.

(A1) follows from (A).
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If we suppose (A1) and apply it to approximate the identity operator idX ∈
L(X; X) by members of F(X; X), then (A) soon follows.

Obviously (A1) is a special case of (A2).
(A1) implies (A2). Suppose F(X; X) is dense in L(X; X) in the topology of

uniform convergence on norm-compact subsets of X. Let Y be a Banach space
and u : X → Y be a bounded linear operator. Define U : L(X; X) → L(X; Y ) by
U(v) = u◦v. Notice that U is a continuous linear operator from L(X; X) to L(X; Y )
even in case each is equipped with the topology of uniform convergence on norm-
compact subsets of X; moreover, U(idX) = u and U takes F(X; X) into F(X; Y ).
We can approximate idX , uniformly on compacta, by members of F(X; X) so U ’s
continuity assures us that we can approximate u = U(idX), uniformly on compacta,
by members of U(F(X, X)) ⊆ F(X, Y ). So, (A2) follows from (A1).

The equivalence of (A3) with (A1) is proved in a manner similar to that of (A2)
with (A1); one close look at the operator W : L(X; X) → L(Z; X), induced by a
w ∈ L(Z; X) via the formula W (v) = v ◦ w, should tell enough to see why.

To see how (A4) follows from (A), suppose X is accessible and let u : Y ∗ → X
be a compact linear operator which is weak∗-weak continuous. u(BY ∗) is a compact
subset of X and X is accessible, so there is a w ∈ F(X; X) which is as close
as you please to idX on u(BY ∗). Naturally w ◦ u is weak∗-weak continuous and
approximates u, as close as you please, on BY ∗ , that is, ‖u − w ◦ u‖ is small. But
now w ◦ u is a weak∗-weak continuous finite rank bounded linear operator from Y ∗

to X; as such w ◦ u can be identified with a member of Y ⊗X. We’ve shown that
Y ⊗ X is dense in the weak∗-weak compact linear operators from Y ∗ to X and
that’s the content of (A4).

Now suppose (A4) is in effect and, with an eye on (A5), let w : Z → X be a
compact linear operator. Naturally, w∗∗ takes Z∗∗ to X in a compact, weak∗-weak
continuous linear manner. Since (A4) is assumed, we can apply it to w∗∗ and the

result is that w∗∗ is (identifiable with) a member of Z∗ ∨
⊗ X. It follows that w is

in the norm closure of the norm closed set Z∗ ∨
⊗ X, as well. This is just (A5).

Finally suppose (A5) holds. To establish (A), let K0 be a compact subset of
X and ε > 0. Then there is a compact subset K of X which is absolutely convex
and such that K0 is compact in XK , which is nothing else than the linear span
of K with K as the closed unit ball. Look at u : XK → X, the formal identity
inclusion; u is a compact linear operator. (A5) applies to u and puts u forth as a

member of (XK)∗
∨
⊗ X. Now we play with topologies: u∗ : X∗ → (XK)∗ has a

range which is weak∗ dense since u is one-to-one; hence u∗X∗ is dense in (XK)∗

in the topology of uniform convergence on norm-compact subsets of XK . But u,

being (identifiable with) a member of (XK)∗
∨
⊗ X, is approximable uniformly on

compact subsets of XK by members of (XK)∗ ⊗X. Keeping in mind the fact that
members of u∗(X∗)⊗X are just operators of the form v ◦ u (v ∈ X∗ ⊗X), it soon
follows from K0’s compactness in XK that there is a v ∈ X∗ ⊗X such that v ◦ u
approximates u on K0 as closely as you please. But v ◦ u ∈ F(X; X) and v ◦ u
approximates the identity on K0. This is just (A). �

1.4. Bilinear forms and linear operators of type α

Let α be a ⊗-norm and X and Y be Banach spaces.
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Since α(u) ≤ |u|∧ for any u ∈ X ⊗ Y , (X
α
⊗ Y )∗ consists of bilinear continuous

functionals on X × Y that are α-continuous.
Recall that a ϕ ∈ B(X, Y ) is said to be of type α provided it belongs to

(X
α∗

⊗ Y )∗. The space Bα(X, Y ) of bilinear forms of type α on X × Y is (as

the dual of X
α∗

⊗ Y ) a Banach space equipped with the norm ‖ · ‖ defined by
‖ϕ‖α = ‖ϕ‖

(X
α∗
⊗Y )∗

.

A bounded linear operator u : X → Y is said to be of type α or α-integral , if
the bilinear map ϕu on X × Y ∗ given by

ϕu(x, y∗) = y∗ (u(x))

is of type α. The space of α-integral linear operators from X to Y is denoted by
Lα(X; Y ) and is equipped with the norm

‖u‖α = ‖ϕu‖Bα(X,Y ∗).

The space Lα(X; Y ) is a Banach space, an isometric isomorph of Bα(X, Y ∗),
in this norm.

Recall that ϕ ∈ B(X, Y ) defines a member of the closed unit ball of (X
∨
⊗

Y )∗ = (X
∧∗

⊗ Y )∗ precisely when there is a regular Borel probability measure µ
defined on (BX∗ , weak∗) × (BY ∗ , weak∗) and bounded linear operators a : X →
L∞(µ), b : Y → L∞(µ), each of norm ≤ 1, such that for x ∈ X and y ∈ Y ,

ϕ(x, y) =
∫

BX∗×BY ∗

ax(x∗, y∗)by(x∗, y∗)dµ(x∗, y∗).

Now suppose u : X → Y is a bounded linear operator that is ∧-integral, or just
integral, for short; then, if ϕu ∈ B(X, Y ∗) is given by

ϕu(x, y∗) = y∗ (u(x)) ,

ϕu is an integral bilinear functional , i.e., ϕu ∈ B∧(X, Y ∗). Therefore, should we
suppose that ‖u‖∧ = ‖ϕu‖B∧(X,Y ∗) ≤ 1, there exists a regular Borel probability
measure µ on (BX∗ , weak∗)× (BY ∗∗ , weak∗) and bounded linear operators a : X →
L∞(µ), b : Y ∗ → L∞(µ), each of norm ≤ 1, such that for x ∈ X and y∗ ∈ Y ∗ we
have

y∗ (u(x)) = ϕu (x, y∗) =
∫

BX∗×BY ∗∗

ax(x∗, y∗∗)by∗(x∗, y∗∗)dµ.

Denoting by I∞,1 the natural inclusion

I∞,1 : L∞(µ) ↪→ L1(µ)

and by c, b∗ |L1(µ), we see that we have just factored u : X → Y in the following
way (jY : Y ↪→ Y ∗∗ is the natural embedding):

X
u ��

a

��

Y � � jY ��Y ∗∗

L∞(µ) � �

I∞,1

��L1(µ)
c

����������

As we will see later, this description of integral operators is central to the metric
theory of tensor products.

Here is an example where we construct the measure µ:
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Theorem 1.4.1 (Grothendieck (1953/1956a), Theorem 1, p. 93). The formal
identity inclusion

�1 ↪→ co

is integral and has integral norm ≤ 1.

Proof. Our aim is to show that the bilinear form φ on �1 × �1 given by

φ(λ, µ) =
∑

n

λnµn

is integral. To find a suitable integral representation of φ we consider the group
G of all sequences λ ∈ �∞ such that |λi| = 1 for all i with coordinatewise multi-
plication. The product topology (or weak∗ topology of �∞ relativized to G) makes
G into a compact Abelian topological group, isomorphic as a topological group to
{s : |s| = 1}N. The mapping

λ → λ⊗ λ

is a continuous map from G into B∧
(
�1, �1

)
when the latter space is equipped with

the weak∗ topology it inherits from B∧
(
�1, �1

)
being the dual of �1

∨
⊗ �1; what’s

more, for any λ ∈ G, λ ⊗ λ ∈ B
B∧

(
�1,�1

). Letting µ be the normalized Haar

measure on G, the Gelfand integral∫
G

λ⊗ λdµ(λ)

exists and is a member, call it φ′, of BB∧(�1,�1). It is plain that for any i, j ∈ N,

φ′(ei, ej) =
∫

G

λ⊗ λ(ei ⊗ ej)dµ(λ)

=
∫

G

λiλjdµ(λ) = δij ,

and so φ′ = φ with

‖φ‖∧ = sup
λ, ν∈B�1

∫
G

|〈λ, γ〉| |〈ν, γ〉|dµ(γ)

≤ 1

where 〈λ, γ〉 =
∑

n λnγn, for λ ∈ �1, γ ∈ �∞. �

For α = | · |∨, the α-integral operators are just the bounded linear operators,
and the bilinear forms of type α just the bounded bilinear forms.

1.4.1. General properties of α-forms. By its very definition, Bα(X, Y ) is

the dual of X
α∗

⊗ Y and so is a Banach space with ‖ · ‖α for a norm. Further, as a
dual, Bα(X, Y )’s closed unit ball is weak∗ compact or, what is the same, BBα(X,Y )

is compact in the topology of pointwise convergence on X
α∗

⊗ Y . Since X
α∗

⊗ Y
is just the completion of X ⊗ Y relative to the norm α∗, we see that BBα(X,Y ) is
compact in the topology of pointwise convergence on X ⊗ Y and what’s more, the
weak∗ topology of BBα(X,Y ) is just the topology of pointwise convergence on X⊗Y ;
but this is just the topology of pointwise convergence on X × Y ! Summarizing we
have the following.
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Lemma 1.4.2. If X and Y are Banach spaces and (ϕi)i∈I is a net of elements of
Bα(X, Y ) such that supI ‖ϕi‖α <∞ and such that for each x ∈ X and each y ∈ Y
the limit limi∈I ϕi(x, y) exists, then ϕ(x, y) ≡ limi∈I ϕi(x, y) defines a member of
Bα(X, Y ), too, with

‖ϕ‖α ≤ sup
I
‖ϕi‖α.

Indeed, by Alaoglu’s theorem, the net (ϕi)i∈I must have a cluster point χ of
norm no more than supI ‖ϕi‖α and by the condition limI ϕi(x, y) exists, (ϕi)i∈I

can only have one such cluster point, ϕ.

Proposition 1.4.3. Suppose X1, X2, Y1 and Y2 are Banach spaces, u : X1 →
X2 and v : Y1 → Y2 are bounded linear operators and ϕ ∈ Bα(X2, Y2). Then

ϕ ◦ (u⊗ v) ∈ Bα(X1, Y1) and ‖ϕ ◦ (u⊗ v)‖α ≤ ‖ϕ‖α‖u‖‖v‖.

In fact, u ⊗ v is a bounded linear operator from X1

α∗

⊗ Y1 to X2

α∗

⊗ Y2 having
operator norm no more than ‖u‖‖v‖. It follows that (u ⊗ v)∗ is a bounded linear

operator of norm ≤ ‖u‖‖v‖, too, with (u⊗ v)∗ taking (X2

α∗

⊗ Y2)∗ to (X1

α∗

⊗ Y1)∗.
It is then plain that (u⊗ v)∗(ϕ) ∈ Bα(X1, Y1) with ‖(u⊗ v)∗(ϕ)‖α ≤ ‖u‖‖v‖‖ϕ‖α.
Of course, an easy check shows that (u⊗ v)∗(ϕ) is just ϕ ◦ (u⊗ v): If x1 ∈ X1, and
y1 ∈ Y1, then

(u⊗ v)∗ (ϕ)(x1, y1) = ϕ ((u⊗ v)(x1 ⊗ y1))

= ϕ (u(x1)⊗ v(y1))

= ϕ (u(x1), v(y1))

= (ϕ ◦ (u⊗ v)) (x1, y1).

For u and v the natural inclusions of subspaces into superspaces, the above
tells us that

Proposition 1.4.4. If X and Y are Banach spaces and ϕ ∈ Bα(X, Y ), then
ϕ |X0×Y0 is an α-form for any closed linear subspaces X0 of X and Y0 of Y with

‖ϕ |X0×Y0‖α ≤ ‖ϕ‖α.

Proposition 1.4.5. If ϕ ∈ Bα(X, Y ), then tϕ, defined on Y ×X by tϕ(y, x) =
ϕ(x, y), belongs to Btα(Y, X) with ‖ tϕ‖tα

= ‖ϕ‖α. In fact, ϕ ∈ B(X, Y ) is of
type α if and only if tϕ is of type tα with ‖ϕ‖α = ‖ tϕ‖tα

.

Suppose ϕ ∈ B(X, Y ). Then for any x ∈ X, ϕx(y) = ϕ(x, y) determines a
member ϕx of Y ∗. Take a y∗∗ ∈ Y ∗∗ and consider for any x ∈ X,

ϕ̃(x, y∗∗) = y∗∗(ϕx) = y∗∗ (ϕ(x, ·)) .

It is easy to see that ϕ̃ ∈ B(X, Y ∗∗). We call ϕ̃ the canonical extension of ϕ to
X × Y ∗∗.

Theorem 1.4.6 (Grothendieck (1953/1956a), Theorem 4, p. 13). Let ϕ be a
continuous bilinear form on X × Y and ϕ̃ its canonical extension to X × Y ∗∗. For
ϕ to be of type α it is necessary and sufficient that ϕ̃ be of type α. In this case

‖ϕ‖α = ‖ϕ̃‖α.

The proof hinges on a most important aspect of the theory of ⊗ norms: their
finite dimensional or local character; for instance, note the following:
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Proposition 1.4.7. Suppose ϕ ∈ B(X, Y ) satisfies ‖ϕ |E×F ‖α ≤ k for some
k > 0 and all E ∈ F(X) and F ∈ F(Y ). Then ϕ ∈ Bα(X, Y ) and ‖ϕ‖α ≤ k.

Proof. Take u ∈ X ⊗ Y with α∗(u) < 1. Choose E ∈ F(X) and F ∈ F(Y )
such that u ∈ E ⊗ F and |u|

E
α∗
⊗F

< 1, too. Then

|ϕ(u)| = |ϕ |E×F (u)| ≤ ‖ϕ |E×F ‖α|u|
E

α∗
⊗F

< k.

It follows that ϕ ∈ (X ⊗ Y, α∗)∗ with ‖ϕ‖(X⊗Y,α∗)∗ ≤ k. Enough said. �

Remark: At this juncture it is convenient to borrow from Chapter 2. The result
we wish to call on depends on further development of the finer theory of integral
operators, a development that does not rely on the present commiserations. The
faith placed in the future will this time be rewarded. The result in question: the

dual of F ∗ ∨
⊗ Y is identifiable with F

∧
⊗ Y ∗ whenever F ∈ F ; as a consequence,

the second dual of the space L(F ; Y ) — which is identifiable with F ∗ ∨
⊗ Y — is

identifiable with L(F ; Y ∗∗), with the dual of L(F ; Y ) being, of course, F
∧
⊗ Y ∗. In

other words, the following equations are in effect

(F ∗ ∨
⊗ Y )∗ = L(F ; Y )∗ = F

∧
⊗ Y ∗

and
L(F ; Y )∗∗ = (F

∧
⊗ Y ∗)∗ = L(F ; Y ∗∗)

so long as F ∈ F , with all identifications being as natural as one might expect.
Because E is finite dimensional, E∗ α

⊗ Y ∗ = Bα(E, Y ). Indeed, suppose that
{e1, . . . , en} is a basis for E and let e∗1, . . . , e

∗
n ∈ E∗ be functionals biorthogonal to

e1, . . . , en. Take ϕ ∈ B(E, Y ). For i = 1, 2, . . . , n define y∗
i (y) = ϕ(ei, y) (y ∈ Y )

and notice that for any x =
∑

i≤n xiei ∈ E and any y ∈ Y we have

ϕ(x, y) = ϕ(
∑
i≤n

xiei, y) =
∑
i≤n

xiϕ(ei, y)

=
∑
i≤n

e∗i (x)y∗
i (y)

= [
∑
i≤n

(e∗i ⊗ y∗
i )](x, y)

and ϕ =
∑

i≤n e∗i ⊗ y∗
i ∈ E∗ ⊗ Y ∗.

On to the proof of Theorem 1.4.6. If ϕ̃ is of type α, then ϕ̃ |X×Y = ϕ is
of type α, too, and

‖ϕ‖α = ‖ϕ̃ |X×Y ‖α ≤ ‖ϕ̃‖α.

Suppose that ϕ ∈ Bα(X, Y ) and let ε > 0 be given as well as E ∈ F(X) and
F ∈ F(Y ∗∗); we’ll show that

‖ϕ̃ |E×F ‖α ≤ ‖ϕ‖α + ε.

We view ϕ ∈ B(X, Y ) as an operator uϕ : X → Y ∗.

Okay, E and F are finite dimensional so E
α∗

⊗ F is isomorphic to E
∧
⊗ F making{

v ∈ E ⊗ F : |v|
E

α∗
⊗F

≤ 1
}
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a norm compact set in E
∧
⊗ F . It follows that{
(idF ⊗ uϕ |E)

(
tv
)

: v ∈ B
E

α∗
⊗F

}
is norm compact in F

∧
⊗ Y ∗. But as remarked above, F

∧
⊗ Y ∗ ⊆

(
F ∗ ∨
⊗ Y

)∗ and so

any element of BL(F ;Y ∗∗) can be approximated pointwise on F
∧
⊗ Y ∗ by members

of BL(F ;Y ) with the approximation uniform on compact subsets of F
∧
⊗ Y ∗. In

particular, the natural inclusion i(F,Y ∗∗) of F into Y ∗∗ can be so approximated. On
so doing we find a w ∈ BL(F ;Y ) so that

sup
v∈B

E
α∗
⊗ F

|
(
i(F,Y ∗∗) − w

)
(idF ⊗ uϕ |E)

(
tv
)
|≤ ε.

But for v ∈ E ⊗ F the mess

i(F,Y ∗∗)

(
(idF ⊗ uϕ |E)( tv)

)
is just ϕ̃ |E×F (v)(!) and the monstrosity

w
(
(idF ⊗ uϕ |E)( tv)

)
is nothing else than (ϕ ◦ (idE ⊗ w) |E×F ) (v). It follows that

‖ϕ̃ |E×F ‖α = sup
v∈B

E
α∗
⊗ F

|ϕ̃(v)| ≤ ε + ‖ϕ ◦ (idE ⊗ w) |E×F ‖α ≤ ε + ‖ϕ‖α.

By this we are at last finished with the proof of our theorem. �
By duality we get

Corollary 1.4.8 (Grothendieck (1953/1956a), Corollary 1, p. 13). B
X

α
⊗Y

is

dense in B
X

α
⊗Y ∗∗ in the topology of pointwise convergence in Bα∗

(X, Y ).

Not quite so immediate but of great importance to the development of the
calculus of tensor products to be pursued later is the following essential fact.

Corollary 1.4.9 (Grothendieck (1953/1956a), Corollary 2, p. 13). The canon-
ical inclusions

X
α
⊗ Y ↪→ X

α
⊗ Y ∗∗, X

α
⊗ Y ↪→ X∗∗ α

⊗ Y and X
α
⊗ Y ↪→ X∗∗ α

⊗ Y ∗∗

are isometric.

Proof. Of course, X
α
⊗ Y ↪→ X

α
⊗ Y ∗∗ has norm at most 1. Take u ∈ X

α
⊗ Y .

Pick ϕ ∈ Bα∗
(X, Y ) (which is (X

α
⊗ Y )∗), ‖ϕ‖α∗ = 1 with ϕ(u) = |u|

X
α
⊗Y

. Then

ϕ̃, the canonical extension of ϕ to a member of Bα∗
(X, Y ∗∗), has ‖ϕ̃‖α∗ = 1, and

so
|u|

X
α
⊗Y ∗∗ ≥ |ϕ̃(u)| = |ϕ(u)| = |u|

X
α
⊗Y

.

The second claim in the corollary follows from the first and a careful consideration
of tα while the third claim is an immediate consequence of the first two. �

Theorem 1.4.6 leads to many interesting conclusions not the least of which
concerns metric accessibility of ⊗-norms:

Proposition 1.4.10. If α is a metrically accessible ⊗-norm, then so too are
tα, α∗ and

∨
α.



46 1. BASICS ON TENSOR NORMS

Proof. Only α∗ needs to be commented upon in any detail.
Theorem 1.4.6 tells us that starting with ϕ ∈ Bα(X, Y ), ϕ̃ ∈ Bα(X, Y ∗∗), the

canonical extension of ϕ, satisfies ‖ϕ̃‖α = ‖ϕ‖. Of course, tϕ̃ ∈ Btα(Y ∗∗, X)
and ‖tϕ̃‖tα

= ‖ϕ̃‖α. Theorem 1.4.6 comes into play again and the result is t̃ϕ̃ ∈
Btα(Y ∗∗, X∗∗) and

∥∥∥ t̃ϕ̃
∥∥∥

tα

= ‖ tϕ̃‖tα
. At last, we find ˜̃ϕ =

t
t̃ϕ̃ ∈ Bα(X∗∗, Y ∗∗)

with ∥∥ ˜̃ϕ
∥∥

α
=
∥∥∥t̃ϕ̃
∥∥∥

tα

=
∥∥tϕ̃
∥∥

tα
= ‖ϕ̃‖α = ‖ϕ‖

and ˜̃ϕ |X×Y = ϕ. The result (and this has nothing to do with accessibility) is that
there’s a natural inclusion

Bα(X, Y ) ↪→ Bα(X∗∗, Y ∗∗)

that’s an isometry as well.
Now suppose α is a metrically accessible norm, E is finite dimensional and Y

is any old Banach space. Consider the canonical inclusion

E∗ α
⊗ Y ∗ ↪→ Bα(E, Y ).

Is it an isometry? YES! After all,

E∗ α
⊗ Y ∗ ↪→ Bα(E∗∗, Y ∗∗)

is an isometry since α is accessible and so we have the diagram

E∗ α
⊗ Y ∗ � � ��

�� ��

isometry

��
Bα(E, Y ) � �

isometry
��Bα(E∗∗, Y ∗∗)

which leaves E∗ α
⊗ Y ∗ ↪→ Bα(E, Y ) little (no) choice but to be an isometry.

Actually, we know from our Remark preceding the proof of Theorem 1.4.6 that
E∗ α
⊗ Y ∗ = Bα(E, Y ).
Now let’s consider α∗’s metric accessibility; the test is whether or not the

natural inclusion

E
α∗

⊗ Y ↪→ Bα∗
(E∗, Y ∗)

is an isometry. Well, consider the following sequence of natural isometric inclusions:

E
α∗

⊗ Y ↪→ (E
α∗

⊗ Y )∗∗ =
(
(E

α∗

⊗ Y )∗
)∗

= Bα(E, Y )∗ = (E∗ α
⊗ Y ∗)∗ = Bα∗

(E∗, Y ∗).

Test passed: α∗ is accessible if α is. �

Corollary 1.4.11. u : X → Y is α-integral if and only if u∗ : Y ∗ → X∗ is
tα-integral, in which case, ‖u‖α = ‖u∗‖tα.

Consequently, u : X → Y is α-integral if and only if u∗∗ : X∗∗ → Y ∗∗ is, with
‖u‖α = ‖u∗∗‖α.

Proof. u ∈ Lα(X; Y ) precisely when ϕu : X×Y ∗ → K defined by ϕu(x, y∗) =
y∗(u(x)) belongs to Bα(X, Y ∗). This happens precisely when tϕu ∈ B

tα(Y ∗, X).
But, again, this is so exactly when t̃ϕu ∈ B

tα(Y ∗, X∗∗). However, a quick evaluation
shows that

t̃ϕu(y∗, x∗∗) = x∗∗(u∗y∗) = ϕu∗(y∗, x∗∗),
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so t̃ϕu = ϕu∗ ∈ Btα(Y ∗, X∗∗) precisely when u∗ : Y ∗ → X∗ belongs in Ltα(Y ∗; X∗).
Norms? In fact,

‖u‖α = ‖ϕu‖α = ‖tϕu‖tα = ‖t̃ϕu‖tα = ‖ϕu∗‖tα = ‖u∗‖tα.

�
1.4.2. General properties of α-integral operators. For emphasis we re-

peat that a bounded linear operator u : X → Y is α-integral if the associated
bounded bilinear form ϕu, defined by

ϕu(x, y∗) = y∗ (u(x))

on X×Y ∗ is of type α; the space Lα(X; Y ) is a Banach space when equipped with
the norm

‖u‖α = ‖ϕu‖α.

We immediately have

Lemma 1.4.12. If X and Y are Banach spaces and (ui)i∈I is a net of elements
of Lα(X; Y ) such that supI ‖ui‖α <∞ and such that for each x ∈ X the weak limit
limi∈I ui(x) exists, then u(x) ≡ limi∈I ui(x) defines a member of Lα(X; Y ), too,
with

‖u‖α ≤ sup
I
‖ui‖α.

Proof. Indeed, the corresponding “pointwise” property holds for bilinear forms
of type α (cf. Lemma 1.4.2). �

In this section we’ll gather some important details about α-integral operators.
First, we take care of identifications. Suppose ϕ ∈ B(X, Y ) and we define uϕ :
X → Y ∗ by uϕ(x)(y) = ϕ(x, y). Then uϕ is α-integral if and only if ϕ is of type α;
in this case, ‖uϕ‖α = ‖ϕ‖α.

To begin, suppose uϕ : X → Y ∗ is α-integral. Then ψuϕ
∈ B(X, Y ∗∗) defined

by
ψuϕ

(x, y∗∗) = y∗∗ (uϕ(x))
is in Bα(X, Y ∗∗). Further, ψuϕ

|X×Y = ϕ and so ϕ ∈ Bα(X, Y ) with ‖ϕ‖α ≤
‖ψuϕ

‖α = ‖uϕ‖α. To finish, suppose ϕ ∈ Bα(X, Y ). Then ϕ̃ ∈ Bα(X, Y ∗∗) and
‖ϕ‖α = ‖ϕ̃‖α where ϕ̃ is the canonical extension of ϕ. But for u : X → Y ∗ defined
by u(x)(y) = ϕ(x, y) we know that ϕu = ϕ̃; ‖u‖α = ‖ϕu‖α = ‖ϕ̃‖α = ‖ϕ‖α.

Proposition 1.4.13. If u : X → Y is a bounded linear operator and j : Y ↪→
Y ∗∗ denotes the canonical isometric embedding, then u ∈ Lα(X; Y ) if and only if
ju ∈ Lα(X; Y ∗∗) with ‖u‖α = ‖ju‖α.

Proof. Let ϕu ∈ B(X, Y ∗) correspond to u : X → Y ; then ju is the operator
in L(X; Y ∗∗) corresponding to ϕu. Notice that:

u ∈ Lα ⇐⇒ ϕu ∈ Bα ⇐⇒ ju ∈ Lα

with norms following suit. �
Finally, it is worth noting that

Proposition 1.4.14. If W, X, Y and Z are Banach spaces and w : W → X,
v : X → Y and u : Y → Z are bounded linear operators with v α-integral, then uvw
is α-integral, too, with

‖uvw‖α ≤ ‖u‖‖v‖α‖w‖.
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Proof. Of course, ϕv ∈ Bα(X, Y ∗) so that ϕuvw = ϕv ◦ (w⊗u∗) ∈ Bα(W, Z∗)
with ‖ϕuvw‖α ≤ ‖ϕv‖α‖w‖‖u∗‖ = ‖ϕv‖α‖w‖‖u‖. But this just says that the
operator from W to Z∗∗ defined by ϕuvw(w, z∗) is α-integral with α-integral norm
= ‖ϕuvw‖α, itself ≤ ‖ϕv‖α‖w‖‖u‖ = ‖v‖α‖w‖‖u‖; however, this operator is quickly
seen to be nothing else but jZuvw and so uvw, itself, is in Lα(W ; Z) with

‖uvw‖α = ‖jZuvw‖α ≤ ‖u‖‖v‖α‖w‖.
�

As in the case of α-forms, α-integrability is determined by behavior on finite
dimensional pieces of the domain; more precisely:

Proposition 1.4.15. If u : X → Y is a bounded linear operator and for some
k > 0 we have

‖u |E ‖α < k

for each E ∈ F(X), then u ∈ Lα(X; Y ) with ‖u‖α ≤ k.

Proof. As usual, ϕu is the bilinear form associated with u. ϕu ∈ B(X, Y ∗).
For any F ∈ F(Y ∗) we see that

‖ϕu |E×F ‖α ≤ ‖ϕu |E×Y ∗‖α = ‖u |E‖α < k.

It follows that ϕu ∈ Bα(X, Y ∗) and ‖ϕu‖α ≤ k; from this we get immediately that
u ∈ Lα(X; Y ) and ‖u‖α = ‖ϕu‖α ≤ k. �

1.4.3. Composition of α-integral and
∨
α-integral operators.

Theorem 1.4.16 (Grothendieck (1953/1956a), Theorem 5, p. 15). Suppose α
is metrically accessible or Y is and let u : X → Y be an α-integral operator with
v : Y → Z an

∨
α-integral operator. Then vu is an integral operator and

‖vu‖∧ ≤ ‖v‖∨
α
‖u‖α.

Proof. We’ll check vu on E’s from F(X). u |E∈ E∗ ⊗ Y = E∗ α
⊗ Y =

Bα(E, Y ∗); the first equality is due to E∗’s finite dimensionality while the second
is due to the accessibility conditions hypothesized along with E∗’s finite dimen-
sionality. Of course, when we write equality above, all the norms are equal, too,
so ∣∣u |E ∣∣

E∗
α
⊗Y

= ‖ϕu|E‖α =
∥∥u |E ∥∥α

where ϕu|E is the bilinear form in Bα(E, Y ∗) induced by u |E . We want to check
‖v ◦ u |E ‖∧ and so we have to see how big the induced bilinear form ϕv◦u|E ∈
B∧(E, Z∗) = (E

∨
⊗ Z∗)∗ gets when evaluated at w’s from E ⊗ Z∗ with |w|∨ ≤ 1.

Take such a w, say w =
∑

i≤n ei ⊗ z∗i and view w, as an operator from E∗ to Z∗;
we soon see that

ϕv◦u|E (w) =
∑
i≤n

z∗i
(
v(u(ei))

)
=
∑
i≤n

v∗
(
z∗i (u |E (ei))

)
= ϕv∗◦w

(
u |E

)
.

So ∣∣ϕv◦u|E (w)
∣∣ = ∣∣ϕv∗◦w(u |E)

∣∣
≤
∥∥ϕv∗◦w

∥∥
(E∗

α
⊗Y )∗

∣∣u |E ∣∣
E∗

α
⊗Y

=
∥∥ϕv∗◦w

∥∥
Bα∗(E∗,Y )

∥∥u |E ∥∥Lα(E;Y )
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=
∥∥v∗ ◦ w

∥∥
Lα∗ (E∗;Y ∗)

∥∥u |E ∥∥Lα(E;Y )

≤
∥∥v∗∥∥Lα∗ (Z∗;Y ∗)

∥∥w∥∥∨∥∥u |E ∥∥α

≤
∥∥v∥∥tα∗

∥∥u |E ∥∥α

=
∥∥v∥∥∨

α

∥∥u |E ∥∥α
.

From this we see that∥∥v ◦ u |E
∥∥
∧ =

∥∥ϕv◦u|E
∥∥
∧ ≤

∥∥v∥∥∨
α

∥∥u |E ∥∥α

and soon thereafter that v ◦ u ∈ L∧(X; Z) and

‖v ◦ u‖∧ ≤ ‖v‖∨
α
‖u‖α.

�

The results of Theorem 1.4.16 are tight in the following sense:

Proposition 1.4.17. If α or Y is metrically accessible and u : X → Y is a
bounded linear operator such that v ◦u is integral whenever v : Y → Z is

∨
α-integral,

then u is, in fact, α-integral.

Proof. Suppose u is as advertised. Then given a Banach space Z there is a
kZ > 0 so that kZ < ∞ and
(∗) ‖v ◦ u‖∧ ≤ kZ‖v‖∨

α

holds for any
∨
α-integral linear operator v : Y → Z; this follows from the fact that

the naturally occurring operator U : L
∨
α(Y ; Z) → L∧(X; Z) given by Uv = v ◦ u is

linear and has a closed graph. Furthermore, there is a k > 0 so that kZ ≤ k(<∞)
for all Z’s. If not, then there would exist Banach spaces Zn such that the best
possible kZn

’s in (∗) tend to ∞. Choose vn ∈ L
∨
α(Y ; Zn) so that ‖vn‖∨

α
< 1 yet

‖vn◦u‖∧ >
kZn

2 . Let Z = (
∑

n Zn)�∞ . Because each Zn is norm-one complemented
in Z,

‖vn : Y → Z‖∨
α

= ‖vn : Y → Zn‖∨
α

< 1

and
kZn

2
≤ ‖vn ◦ u : X → Zn‖∧ = ‖vn ◦ u : X → Z‖∧ ≤ kZ .

Since kZn
↗∞, this is impossible.

Okay, now take E ∈ F(X). Any v ∈ L
∨
α(Y ; E) produces v ◦ u |E∈ L∧(E; E) or

equivalently ϕv◦u|E ∈ B∧(E, E∗); moreover,

‖v ◦ u |E‖L∧(E;E) =
∥∥ϕv◦u|E

∥∥
∧ ≤ k ‖v‖∨

α
.

Define Φ : B
∨
α(Y, E∗)→ B∧(E, E∗) by taking ψ ∈ B

∨
α(Y, E∗), inducing the operator

vψ ∈ L
∨
α(Y ; E∗∗) = L

∨
α(Y ; E) — E is finite dimensional, remember — and define

Φ(ψ) = ϕvψ
◦ u |E . Naturally, ‖Φ‖ ≤ k. A picture follows (commutatively drawn,

of course):
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B∧(E, E∗)∗ Φ∗
−−−−→ B

∨
α(Y, E∗)∗�⏐⏐ �⏐⏐

E
∨
⊗ E∗ Y

tα
⊗ E∗

t(.)

�⏐⏐ �⏐⏐t(.)

E∗ ∨
⊗ E −−−−−−→

idE∗ ⊗ u
E∗ α
⊗ Y

Let’s compute. By our accessibility assumptions, and the finite dimensionality
of E,

E∗ ⊗ Y = E∗ α
⊗ Y = Bα(E, Y ∗)

and
|u |E |

E∗
α
⊗Y

=
∥∥ϕu|E

∥∥
Bα(E,Y ∗)

= ‖u |E‖Lα(E;Y ) .

Start with idE : E → E and realize idE as an ε ∈ E∗⊗E = E∗ ∨
⊗ E; (idE∗ ⊗ u |E) (ε)

is just u |E . In our diagram all vertical arrows are isometries so if we start with ε

and proceed up the left side then across the top, the resulting member of B
∨
α(Y, E∗)∗

will have norm ≤ k — after all ‖ε‖∨ = 1; on the other hand, if we go across the bot-
tom to u |E , then, thanks to the right side’s isometric proclivity, we get a member

of E∗ α
⊗ Y whose norm is ≤ k, too. In other words,

‖u |E‖Lα(E;Y ) = |u |E |
E∗ α

⊗Y
≤ k.

Enough said. �

1.4.4. Accessibility and metric accessibility (continued). Now we re-
turn to accessibility and some further equivalences thereof. We continue with the
numbering as in Theorem 1.3.11 (p. 39).

Theorem 1.4.18. Each of the following conditions is both necessary and suffi-
cient for a Banach space X to be accessible.

(A6) The natural injection of X∗ ∧
⊗ X into L(X; X) is one-to-one.

(A7) Given (x∗
n) ⊆ X∗ and (xn) ⊆ X such that

∑
n ‖x∗

n‖‖xn‖ <∞ and
∑

n x∗
n(x)xn

= 0 for all x ∈ X it follows that
∑

n x∗
n(xn) = 0.

The proof turns on a better understanding of the topology of uniform con-
vergence on compacta. Lemma 1.3.9 finds application in the present context by
helping to describe those linear functionals on L(X; Y ) that are continuous with
respect to the topology of uniform convergence on compacta:

Proposition 1.4.19. The linear functional � on L(X; Y ) is continuous on
L(X; Y ) relative to the topology of uniform convergence on compact subsets of X
precisely when there exist sequences (y∗

n) ⊆ Y ∗; (xn) ⊆ X such that
∑

n ‖y∗
n‖‖xn‖ <

∞ and �(u) =
∑

n y∗
n (u(xn)) for all u ∈ L(X; Y ).

Proof. It is easy to see that �’s of the prescribed fashion are continuous on
L(X; Y ) when it is equipped with the topology of uniform convergence on compacta;
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in fact, a slight adjustment in the y∗
n’s and xn’s will allow us to assume

∑
n ‖y∗

n‖ <
∞ and limn ‖xn‖ = 0. This having been done, note that

|�(u)| = |
∑

n

y∗
n(u(xn))| ≤ (

∑
n

‖y∗
n‖)‖u‖{xn},

where ‖u‖K = supx∈K ‖ux‖.
On the other hand, for a linear functional � on L(X; Y ) to be continuous with

respect to the topology of uniform convergence on compact subsets of X entails the
existence of some compact set K ⊆ X such that for any u ∈ L(X; Y ),

|�(u)| ≤ ‖u‖K = sup
x∈K

‖ux‖.

By Lemma 1.3.9, there is a norm null sequence (xn) in X such that K ⊆ co{xn : n ≥
0}; in terms of � this tells us that for any u ∈ L(X; Y ) we have |�(u)| ≤ supn ‖uxn‖.
Look at Z ⊆ co(Y ) given by

Z = {(uxn) : u ∈ L(X; Y )};
Z is a linear space and if we define �̂ on Z by �̂((uxn)) = �(u), then �̂ is continuous
on Z, viewed as a subspace of co(Y ). The Hahn-Banach theorem tells us we can
extend �̂ to a member L of co(Y )∗ without increasing norm even; naturally, L can
be realized as a member of �1(Y ∗) = co(Y )∗ and so L’s value at (yn) ∈ co(Y ) is
given by L(yn) =

∑
n y∗

n(yn) for some (y∗
n) ∈ �1(Y ∗). Back to �: �(u) = �̂((uxn)) =

L((uxn)) =
∑

n y∗
n(u(xn)). Okay? �

Now we’ll get on with the proof of our alternative descriptions of accessibility.

Proof of Theorem 1.4.18. Suppose X is not accessible. Then idX is not in
the closure of F(X; X) relative to the (locally convex linear) topology of uniform
convergence on compact subsets of X; it follows that there is a linear functional �
on L(X; X) that is continuous with respect to the topology of uniform convergence
on compacta, vanishes on F(X; X), but takes value 1 at idX . � must be of the form

�(u) =
∑

n

x∗
n(u(xn))

for some judiciously chosen sequences (x∗
n) ⊆ X∗, (xn) ⊆ X with∑

n

‖x∗
n‖‖xn‖ < ∞.

Take any x ∈ X and x∗ ∈ X∗:

0 = �(x∗ ⊗ x) =
∑

n

x∗
n(x)x∗(xn) = x∗(

∑
n

x∗
n(x)xn);

therefore,
∑

n

x∗
n(x)xn = 0 for all x ∈ X. Yet

1 = �(idX) =
∑

n

x∗
n(xn).

X does not satisfy (A7).
Suppose X is accessible. Then idX is in the closure of F(X; X) relative to the

topology of uniform convergence on compact subsets of X. If we take (x∗
n) ⊆ X∗ and

(xn) ⊆ X such that
∑

n ‖x∗
n‖‖xn‖ < ∞ and

∑
n x∗

n(x)xn = 0 for all x ∈ X, then
for any x∗ ∈ X∗ we have x∗(

∑
n x∗

n(x)xn) = 0; it follows that
∑

n x∗
n ⊗ xn defines
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a linear functional on L(X; X) that vanishes at each x∗⊗x hence on F(X; X) and
therefore everywhere. Evaluating

∑
n x∗

n⊗xn at idX gives 0 = (
∑

n x∗
n⊗xn)(idX) =∑

n x∗
n(xn). This is (A7).

We’ve shown that accessibility of X is equivalent to condition (A7). Now let’s
take aim at (A6)’s equivalence with accessibility.

Suppose the inclusion of X∗ ∧
⊗ X into L(X; X) is 1 − 1. Let (x∗

n) ⊆ X∗ and
(xn) ⊆ X satisfy

∑
n ‖x∗

n‖‖xn‖ < ∞ as well as
∑

n x∗
n(x)xn = 0 for all x ∈ X.

Then
∑

n x∗
n ⊗ xn ∈ X∗ ∧

⊗ X and, as an operator,
∑

n x∗
n ⊗ xn is 0; it follows that∑

n x∗
n ⊗ xn = 0 as a member of X∗ ∧

⊗ X and so ϕ(
∑

n x∗
n ⊗ xn) = 0 for every

ϕ ∈ B(X∗, X) = (X∗ ∧
⊗ X)∗. Try ϕ = tr: tr(x∗, x) = x∗(x); then

0 = tr(
∑

n

x∗
n ⊗ xn) =

∑
n

tr(x∗
n ⊗ xn) =

∑
n

x∗
n(xn).

Finally, we suppose (A7) holds, u ∈ X∗ ∧
⊗ X and the operator ũ : X → X

induced by u is the 0 operator. Since u ∈ X∗ ∧
⊗ X, we can find (x∗

n) ∈ �1(X∗),
(xn) ∈ c0(X) such that u =

∑
n x∗

n ⊗ xn; of course, ũ(x) =
∑

n x∗
n(x)xn = 0 for

all x ∈ X. Now, if ε > 0, (xn) is norm null so there exists a w ∈ F(X; X) so that
‖wxn−xn‖ < ε/(1+

∑
n ‖x∗

n‖), for all n; after all, (A7) does imply X is accessible!
It follows that

|
∑

n

x∗
n ⊗ xn −

∑
n

x∗
n ⊗ wxn|∧ ≤ ε

∑
n

‖x∗
n‖.

But here’s the catch:

0 = w(ũ(x)) = w(
∑

n

x∗
n(x)xn) =

∑
n

x∗
n(x)w(xn) = (

∑
n

x∗
n ⊗ w(xn))(x)

and so
∑

n x∗
n⊗wxn is zero as a member of L(X; X). But

∑
n x∗

n⊗wxn, despite its
deceiving looks, is a member of F(X; X) = X∗ ⊗X and there’s no subtlety about
this: the range of

∑
n x∗

n⊗wxn is contained in the range of w, a finite dimensional
subspace of X. In other words,

|
∑

n

x∗
n ⊗ xn|∧ = |

∑
n

x∗
n ⊗ xn −

∑
n

x∗
n ⊗ wxn +

∑
n

x∗
n ⊗ wxn|∧

= |
∑

n

x∗
n ⊗ xn −

∑
n

x∗
n ⊗ wxn|∧

≤ ε
∑

n

‖x∗
n‖.

ε > 0 is arbitrary, so we conclude that |
∑

n x∗
n⊗xn|∧ = 0 or u = 0 in X∗ ∧

⊗ X. �

Having worked so hard to understand accessibility let’s derive a couple of useful
consequences. The first consequence to be drawn comes directly from condition
(A7).

Corollary 1.4.20. If X∗ is accessible, then so is X.

Proof. We test X for the symptoms described in (A7): Take (x∗
n) ⊆ X∗ and

(xn) ⊆ X such that
∑

n ‖x∗
n‖‖xn‖ <∞ and

∑
n x∗

n(x)xn = 0 for each x ∈ X. Then
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n ‖jXxn‖‖x∗

n‖ <∞ and for any x ∈ X and x∗ ∈ X∗,∑
n

(jXxn)(x∗)x∗
n(x) =

∑
n

x∗(xn)x∗
n(x) = x∗(

∑
n

x∗
n(x)xn) = 0.

By (A7) (for X∗),
0 =

∑
n

jX(xn)(x∗
n) =

∑
n

x∗
n(xn).

�

Concerning our interpretations of members of X∗ ∨
⊗ Y as compact linear oper-

ators we have the following.

Theorem 1.4.21. If either X∗ or Y is accessible, then X∗ ∨
⊗ Y coincides with

K(X; Y ).

Proof. The situation when Y is accessible is already proved in Theorem 1.3.11
((A)’s equivalence with (A5)).

Now suppose X∗ is accessible, let u : X → Y be a compact linear operator and
suppose ε > 0 has been given. Now u∗ : Y ∗ → X∗ is a compact linear operator
thanks to Schauder’s theorem and so there is a finite rank bounded linear operator
v : X∗ → X∗ such that ‖x∗ − vx∗‖ ≤ ε for all x∗ ∈ u∗BY ∗ , thanks to X∗’s
accessibility. Again, ‖u∗ − vu∗‖ ≤ ε and vu∗ is a bounded linear operator with
finite dimensional range; it follows that u∗∗v∗ = (vu∗)∗ is a finite rank bounded
linear operator and

‖u∗∗ − u∗∗v∗‖ = ‖u∗ − vu∗‖ ≤ ε.

From this it follows easily that ‖u− u∗∗v∗ |X ‖ ≤ ε. �

It is worth mentioning now that the above actually characterizes the accessi-
bility of X∗, that is, one can show that X∗ is accessible if and only if for every

Banach space Y , X∗ ∨
⊗ Y = K(X; Y ).

There are conditions similar to those formulated in (A6) and (A7) that char-
acterize metric accessibility, and such conditions are the objects of attention in the
next result.

Theorem 1.4.22. Each of the following statements is equivalent to the state-
ment that the Banach space X is metrically accessible.

(MA6) The natural inclusion of X
∧
⊗ X∗ into B∧(X∗, X) is an isometry.

(MA7) For each Banach space Y , the natural inclusion of X
∧
⊗ Y into B∧(X∗, Y ∗)

is an isometry.

Proof. We’ve already noted that (MA7) is a consequence of the metric acces-
sibility of X and ∧ in Proposition 1.3.5; for (MA6) we observe the following

X
∧
⊗ X∗ � � ��

�� �� ��
B∧(X∗, X) � � ��B∧(X∗, X∗∗)

Theorem 1.4.6 tells us B∧(X∗, X) ↪→ B∧(X∗, X∗∗) is an isometry while (MA7)

ensures us that X
∧
⊗ X∗ ↪→ B∧(X∗, X∗∗) is an isometry; little choice is left for

X
∧
⊗ X∗ ↪→ B∧(X∗, X) to be but an isometry.
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The dual of X
∧
⊗ X∗ is B(X, X∗) = L(X; X∗∗) and the dual of X∗ ∨

⊗ X
is B∧(X∗, X). If (MA6) is assumed, then B

X∗
∨
⊗X

must be dense in BL(X;X∗∗)

in the topology of pointwise convergence (by duality); hence, B
X∗

∨
⊗X

is dense in
BL(X;X) in that same topology. But this implies B

X∗
∨
⊗X

is dense in BL(X;X) in the
topology of uniform convergence on norm compact subsets of X, thanks to the total
boundedness of such sets in Banach spaces. This, though, just says X is metrically
accessible. �

As in the case of accessibility we have metric accessibility passing from X∗ to
X.

Corollary 1.4.23. If X∗ is metrically accessible, then so is X.

Proof. Look at the following picture:

X
∧
⊗ X∗ −−−−→ B∧(X∗, X)⏐⏐� ⏐⏐�

X∗∗ ∧
⊗ X∗ −−−−→ B∧(X∗, X∗∗)

Vertical maps are isometries thanks to Theorem 1.4.6. The bottom of it all
is an isometry because X∗ is metrically accessible so (MA6) applies for X∗. This
forces the top to be an isometry. All maps are the natural ones, naturally. �

1.5. α-nuclear forms and operators

Let α be a ⊗-norm and suppose that X and Y are Banach spaces. Consider
the natural map ν : X∗ α

⊗ Y ∗ ↪→ Bα(X, Y ). Thanks to the diagram

X∗ α
⊗ Y ∗ � � ν ��

�� ��

norm ≤ 1

��
Bα(X, Y ) � �

isometry
��Bα(X∗∗, Y ∗∗)

we see that ν has norm at most 1. Any ϕ ∈ Bα(X, Y ) that is in ν’s range is called
α-nuclear; we equip the space Bα(X, Y ) of all α-nuclear bilinear forms with the

norm induced by (X∗ α
⊗ Y ∗)/ ker(ν). It follows that the α-nuclear norm Nα(ϕ) of

ϕ ∈ Bα(X, Y ) is given by

Nα(ϕ) = inf
{
|u∗|

X∗
α
⊗Y ∗ : ν(u∗) = ϕ

}
.

Of course if ϕ ∈ Bα(X, Y ), then ‖ϕ‖∨ ≤ ‖ϕ‖α ≤ Nα(ϕ).

Again, consider the natural map ν̃ : X∗ α
⊗ Y ↪→ Lα(X; Y ); a look at the

diagram

X∗ α
⊗ Y

� � ν̃ ��
�� ��

norm at most 1

��
Lα(X; Y ) � �

isometry
��Bα(X, Y ∗) � �

isometry
��Bα(X∗∗, Y ∗)

tells us that the map ν̃ has norm at most 1. Any u ∈ Lα(X; Y ) that is in ν̃’s range
is called an α-nuclear operator and we endow the space Lα(X; Y ) of all α-nuclear
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operators with the norm induced by ν̃ from X∗ α
⊗ Y/ ker(ν̃). So if u ∈ Lα(X; Y ),

then the α-nuclear norm Nα(u) of u is given by

Nα(u) = inf
{
|v|

X∗
α
⊗Y

: ν̃(v) = u
}

.

Both (Bα(X, Y ), Nα) and (Lα(X; Y ), Nα) are Banach spaces.

Proposition 1.5.1. Let ϕ ∈ B(X, Y ) and define uϕ : X → Y ∗ by uϕ(x)(y) =
ϕ(x, y). Then ϕ ∈ Bα(X; Y ) if and only if uϕ ∈ Lα(X; Y ∗) with Nα(ϕ) = Nα(uϕ).

Proof. The key to why this is so is the following commutative diagram:

Bα(X, Y )

natural
isometry

��

ϕ

��

X∗ α
⊗ Y ∗

ν

������������

ν̃
		����������

Lα(X; Y ∗)

��

uϕ

��

After all, ϕ is in ν’s range precisely when uϕ is in ν̃’s range and ker ν = ker ν̃. �

All is not completely analogous to the situation encountered with α-integral
forms and α-integral operators. We did not define u : X → Y ’s membership in
Lα(X; Y ) by demanding that ϕu, the bilinear functional on X × Y ∗ induced by u
via ϕu(x, y∗) = y∗u(x), be in Bα(X, Y ∗) and generally this is not the case. The
best that can be said is just this:

Proposition 1.5.2. If u : X → Y is an α-nuclear operator, then ϕu is an
α-nuclear form on X × Y ∗ with Nα(ϕu) ≤ Nα(u); in turn, if ϕu is an α-nuclear
form on X×Y ∗, then jY ◦u : X → Y ∗∗ is an α-nuclear operator with Nα(jY ◦u) ≤
Nα(ϕu).

Proof. To see why this is so, assume u : X → Y is an α-nuclear operator and
picture this:

X∗ α
⊗ Y

� �idX∗⊗jY��

ν̃

��

X∗ α
⊗ Y ∗∗

ν

��
Lα(X; Y ) ��Bα(X, Y ∗)

u � ��ϕu

There must be ũ ∈ X∗ α
⊗ Y so that

ν̃ũ = u.

But then ϕu = ν ((idX∗ ⊗ jY )(ũ)) so that ϕu ∈ Bα(X, Y ∗) and

Nα(ϕu) ≤ |(idX∗ ⊗ jY ) (ũ)|
X∗

α
⊗Y ∗∗ ≤ |ũ|X∗

α
⊗Y

from which it follows that
Nα(ϕu) ≤ Nα(u)

since
Nα(u) = inf

{
|ũ|

X∗
α
⊗Y

: ν̃ũ = u
}

.
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The second assertion, regarding ϕu ∈ Bα(X, Y ∗) implying jY ◦ u ∈ Lα(X; Y ∗∗) is
an immediate consequence of the fact that jY ◦ u is just the operator induced by
ϕu and we saw that starting from an α-nuclear bilinear form, one is always led to
an α-nuclear linear operator of the same norm. �

Regarding compositions we have:

Proposition 1.5.3. If ϕ ∈ Bα(X, Y ), u ∈ L(W ; X) and v ∈ L(Z; Y ), then

ϕ ◦ (u⊗ v) ∈ Bα(W, Z) with Nα (ϕ ◦ (u⊗ v)) ≤ ‖u‖‖v‖Nα(ϕ).

Similarly, if u : W → X, v : X → Y and w : Y → Z are bounded linear operators
with v ∈ Lα(X; Y ), then wvu ∈ Lα(W ; Z) with Nα(wvu) ≤ ‖w‖Nα(v)‖u‖.

Proof. Let’s look at the first of these assertions with the following commuta-
tive diagram as our guide:

ϕ � ��ϕ ◦ (u⊗ v)
Bα(X, Y ) ��Bα(W, Z)

X∗ α
⊗ Y ∗

ν

��

u∗⊗v∗
��W ∗ α

⊗ Z∗

ν

��

If you start with ϕ ∈ Bα(X, Y ), then there must be a ũ ∈ X∗ α
⊗ Y ∗ so that νũ = ϕ.

But then ϕ ◦ (u⊗ v) must be ν ((u∗ ⊗ v∗)(ũ)) and so ϕ ◦ (u⊗ v) ∈ Bα(W, Z) with

Nα (ϕ ◦ (u⊗ v)) ≤ |(u∗ ⊗ v∗)(ũ)|
W∗

α
⊗Z∗ ≤ ‖u

∗‖‖v∗‖|ũ|
X∗

α
⊗Y ∗

which, since ũ is arbitrarily chosen to satisfy ν(ũ) = ϕ, gives us

Nα (ϕ ◦ (u⊗ v)) ≤ ‖u∗‖‖v∗‖Nα(ϕ) = ‖u‖‖v‖Nα(ϕ).

Similar reasoning based (if you please) on the commutative diagram

a � ��wau

Lα(X; Y ) ��Lα(W ; Z)

X∗ α
⊗ Y

ν̃

��

u∗⊗w
��W ∗ α

⊗ Z

ν̃

��

will lead to a proof of the second assertion. �

Accessibility soon plays an important role in the study of α-nuclearity. For
instance:

Proposition 1.5.4. If either X∗ or Y is accessible, then the natural inclusion
X∗ α

⊗ Y ↪→ L(X; Y ) is 1− 1.

Of course, we have already seen this to be so for α = ∧ and we’ll have recourse
to call upon this in the proof of the more general result just claimed.

Proof. Let’s denote by ũ the operator from X to Y determined by u ∈ X∗ α
⊗

Y . Suppose that ũ = 0. We want to show that u = 0 in X∗ α
⊗ Y . There is but

one approach available to us: duality. We plan to show that given any member ϕ

of (X∗ α
⊗ Y )∗ = Bα∗

(X∗, Y ), then ϕ(u) = 0.
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So take such a ϕ ∈ Bα∗
(X∗, Y ); ϕ induces an operator vϕ ∈ Lα∗

(X∗; Y ∗) and
so a natural map is presented to us:

Φ : B(Y ∗, Y ) → Bα∗
(X∗, Y ) given by Φ(ψ) = ψ ◦ (vϕ ⊗ idY ).

Φ is a bounded linear operator for which ‖Φ‖ ≤ ‖vϕ‖α∗ = ‖ϕ‖α∗ . Notice that the
following diagram is commutative:

X∗ ⊗ Y
vϕ⊗idY

��

inclusion

��

Y ∗ ∧
⊗ Y

inclusion

��

(X∗ α
⊗ Y )∗∗ (Y ∗ ∧

⊗ Y )∗∗

Bα∗
(X∗, Y )∗

Φ∗
��B(Y ∗, Y )∗

From this we see that vϕ ⊗ idY is a bounded linear operator from (X∗ ⊗ Y, α) to
(Y ∗ ⊗ Y,∧)(!) with

‖vϕ ⊗ idY ‖L((X∗⊗Y,α);(Y ∗⊗Y,∧)) ≤ ‖ϕ‖α∗ ;

so that vϕ ⊗ idY extends naturally to an operator taking X∗ α
⊗ Y into Y ∗ ∧

⊗ Y , an

operator having norm ≤ ‖ϕ‖α∗ . It is easy to see that for w ∈ X∗ α
⊗ Y ,

ϕ(w) = tr ((vϕ ⊗ idY )(w))!

But (vϕ ⊗ idY )(w), as an operator on Y is just w̃ ◦ v∗ϕ |Y and so if u ∈ X∗ α
⊗ Y is

such that ũ = 0, then ũ ◦ v∗ϕ |Y = 0 so that ˜(vϕ ⊗ idY )(u) = 0, where

(vϕ ⊗ idY )(u) ∈ Y ∗ ∧
⊗ Y.

Supposing Y is accessible, tells us that (vϕ ⊗ idY )(u) = 0 in Y ∗ ∧
⊗ Y , forcing ϕ(u) =

0.
If X∗ is accessible, then one travels a similar path. Again, let u → ũ denote

the interpretation of u ∈ X∗ α
⊗ Y as an operator ũ from X to Y and suppose ũ = 0.

Take ϕ ∈
(
X∗ α

⊗ Y
)∗

= Bα∗
(X∗, Y ). On the one hand, ϕ induces an operator

vϕ ∈ Lα∗
(X∗; Y ∗) and, on the other hand, tϕ ∈ B

∨
α(Y, X∗) induces an operator

wtϕ
∈ L

∨
α(Y ; X∗∗); it is easy to verify that wtϕ

= v∗ϕ |Y . As in the first paragraphs,(
wtϕ

⊗ idX∗

)
(tu) finds itself in X∗∗ ∧

⊗ X∗ and

tr
(
(wtϕ

⊗ idX∗)(tu)
)

= ϕ(u).

But ũ = 0 and
˜(

wtϕ
⊗ idX∗

)
(tu) : X∗ → X∗ is just ũ∗ ◦ vϕ, so

(
wtϕ

⊗ idX∗

)
(tu)

must be zero as a member of X∗∗ ∧
⊗ X∗ — thanks to X∗ being accessible. ϕ(u) = 0,

too, and again we deduce from duality that u = 0 as a member of X∗ α
⊗ Y . �

Of course, a consequence of the injective behavior of the inclusion of X∗ α
⊗ Y

into L(X; Y ) when either X∗ or Y is accessible concerns α-nuclear operators:
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Proposition 1.5.5. If either X∗ or Y is accessible, then X∗ α
⊗ Y ↪→ Lα(X; Y )

is one-to-one and X∗ α
⊗ Y = Lα(X; Y ) isometrically.

After all, the kernel of ν̃ is but a single point, 0, and so the norm Nα is just
the norm α in X∗ α

⊗ Y .
Generally:

Proposition 1.5.6. If u : X → Y is α-nuclear, then u∗ : Y ∗ → X∗ is tα-
nuclear.

In fact, for u to be α-nuclear there must be a vu ∈ X∗ α
⊗ Y so that u = ṽu in

the notation employed above. But vu ∈ X∗ α
⊗ Y ensures t(vu) ∈ Y

tα⊗ X∗ and so
t̃(vu) : Y ∗ → X∗ is tα-nuclear. It is true that (̃tvu) = u∗, of course. Notice that
Ntα

(u∗) ≤ Nα(u).
If u ∈ L(X; Y ) and u∗ ∈ Ltα

(Y ∗; X∗) then jY u ∈ Lα(X∗∗; Y ∗∗); it would be
nice if actually u ∈ Lα(X; Y ) and this can be deduced sometimes. For instance:

Proposition 1.5.7. If X∗ is accessible and u : X → Y has a tα-nuclear ad-
joint, then u is α-nuclear. Moreover, Nα(u) = Ntα

(u∗).

Proof. Suppose u∗ is tα-nuclear; since tα ≥ ∨, u∗ is a compact linear operator
and so u is, too. This tells us that u∗ is actually weak∗-weak continuous. Now u∗

is the operator in Ltα(Y ∗; X∗) associated with some v ∈ Y ∗∗ tα⊗ X∗. Actually, v

belongs to Y
tα⊗ X∗, a closed linear subspace of Y ∗∗ tα⊗ X∗, thanks to Corollary

1.4.8. In fact, suppose ϕ ∈
(

Y ∗∗ tα⊗ X∗
)∗

= B
∨
α(Y ∗∗, X∗) vanishes on Y

tα⊗ X∗ and

let wϕ : Y ∗∗ → X∗∗ be the operator induced by ϕ. Just like in the previous proofs

involving the interplay of accessibility and α-nuclearity, wϕ⊗ idX∗ takes Y ∗∗ tα⊗ X∗

into X∗∗ ∧
⊗ X∗ in a continuous linear fashion with

tr ((wϕ ⊗ idX∗)(v)) = ϕ(v).

Now, proceeding by a check against elementary tensors, one soon realizes that

˜(wϕ ⊗ idX∗)(v)∗ = wϕ ◦ u∗∗

where ( ˜(wϕ ⊗ idX∗)(v) is the operator from X∗ to itself induced by

(wϕ ⊗ idX∗) (v) ∈ X∗∗ ∧
⊗ X∗.

Since wϕ vanishes on Y and since u∗∗(X∗∗) is contained in Y (actually jY Y , a

negligible difference here), ˜(wϕ ⊗ idX∗)(v)∗ = 0 and so ˜(wϕ ⊗ idX∗)(v) = 0. But

X∗ is accessible so (wϕ ⊗ idX∗) (v) = 0 in X∗∗ ∧
⊗ X∗ and this soon tells us that

ϕ(v) = 0. Every ϕ ∈
(

Y ∗∗ tα⊗ X∗
)∗

vanishing on Y
tα⊗ X∗ vanishes at v as well:

v ∈ Y
tα⊗ X∗ with Nα(u∗) = |v|

Y
tα
⊗X∗

thanks to the one-to-one behavior of the

inclusion map Y ∗∗ tα⊗ X∗ ↪→ Ltα(Y ∗; X∗). Ah ha! tv ∈ X∗ α
⊗ Y and it is plain

that u is the operator defined by tv with Nα(u) ≤ |tv|
X∗

α
⊗Y

= |v|
Y

tα
⊗X∗

= Ntα(u∗).
Enough said. �
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Another role well-played by accessibility:

Proposition 1.5.8. Suppose u : X → Y is α-nuclear into Y ∗∗ (or, more
precisely suppose jY u : X → Y ∗∗ is α-nuclear) and X∗ is accessible; then u is
α-nuclear with

Nα(u) = Nα(jY u).

Proof. jY u is just u∗∗ |X so this is an immediate consequence of our previous
efforts. �

1.6. The Dvoretzky-Rogers theorem, Grothendieck-style

The famous theorem of A. Dvoretzky and C. Rogers was held in appropriately
high esteem by Grothendieck, so high that he devoted an entire paper discussing

it, extending and sharpening it and applying it to compare �p
∧
⊗ X, �p

X and �p
∨
⊗ X

for 1 < p < ∞ when X is infinite dimensional.

1.6.1. The fundamental lemma. Now we turn to a discussion of Grothen-
dieck’s rendering of the Dvoretzky-Rogers Theorem. We’ll use some facts from
elementary integral geometry. For those readers not familiar with these results we
refer to Appendix B for an introduction to this special part of integral geometry
containing all the necessary results with proofs.

Lemma 1.6.1 (Grothendieck (1953/1956b), Lemma, p. 97). Let E be an n-di-
mensional Banach space. There exist x1, . . . , xn ∈ SE such that if 1 ≤ r ≤ n, then
for any λ1, . . . , λr ∈ R,

‖
r∑

i=1

λixi‖ ≤Mr‖(λi)‖�2r
,

where

Mr = 1 +
1
n

(12 + 22 + · · ·+ (r − 1)2)1/2 ≤ 1 +
r
√

r

n
√

3
.

This is Grothendieck’s version of the Dvoretzky-Rogers Lemma/Theorem.

Proof. We start by inscribing inside BE an ellipsoid of maximum volume. If
we apply an invertible linear transformation T to E we may transform this ellipsoid
into the closed unit ball of �2n; of course, under this transformation BE is changed
too. It is important to note that, because T is invertible, T (BE) is a closed unit
ball of a norm on E and that, in fact, T acts as an isometry from E to T (E)
(= (E, ‖ · ‖T (BE)).

This in mind, we may as well assume that the ellipsoid described above is
B�2n

= B.
Here’s what we’ll do! We’re going to find an orthonormal basis {u1, . . . , un}

and points {x1, . . . , xn} for which

‖ui‖E = 1 = ‖xi‖�2n
, i = 2, . . . , n,

with
xi =

∑
j≤i

ai,juj , i = 1, . . . , n

and
a2

i,1, + · · ·+ a2
i,i−1 ≤

i− 1
n

, i = 1, . . . , n.
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Naturally, the proof will be an induction on i.
Starting with i = 1, take u1 = x1 to be any point of contact of SE and S�2n

;
since B�2n

is an ellipsoid of maximum volume inscribed in BE , we can be assured
that there is such a point. Extend {u1} to an orthonormal basis {u1, u2, . . . , un} of
�2n in any way you wish; we have achieved the conditions set forth above for i = 1.

Now suppose we have found x1, . . . , xi and an orthonormal set {u1, . . . , ui} such
that for any j ≤ i,

‖xj‖E = 1 = ‖uj‖�2n
, xj =

∑
k≤j

aj,kuk

and
a2

k,1 + · · ·+ a2
k,k−1 ≤

k − 1
n

, k = 1, . . . , j.

Extend {u1, . . . , ui} to an orthonormal basis for �2n as you wish.
Let ε > 0. Look at the ellipsoid Cε whose members are vectors of the form

a1u1 + a2u2 + · · ·+ anun

where

(1 + ε)n−i(a2
1 + · · ·+ a2

i ) + (1 + ε + ε2)−i(a2
i+1 + · · ·+ a2

n) ≤ 1.

If S : �2n → �2n is the linear transformation such that

Suk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
1(

1
1+ε

)n−i
2

)
uk if k = 1, . . . , i,

(
1(

1+ε+ε2
) i

2

)
uk if k = i + 1, . . . , n,

then
Cε = S−1(B).

Hence
vol(Cε) = det(S−1)vol(B),

where

det(S−1) =
( 1

1 + ε

)i·n−i
2

(1 + ε + ε2)(n−i) i
2 > 1.

So Cε is an ellipsoid, centered at the origin, with volCε > volB. It follows from B’s
maximality properties that Cε cannot lie entirely inside BE . There’s a point p(ε)
common to Cε and SE . Naturally, p(ε) ∈ SE ensures us that ‖p(ε)‖E = 1. If we
suppose

p(ε) = α1(ε)u1 + · · ·+ αn(ε)un,

then the fact that ‖ ‖�2n
≥ ‖ ‖E (B is inscribed in BE) tells us

α1(ε)2 + · · ·+ αn(ε)2 = ‖p(ε)‖2�2n ≥ ‖p(ε)‖2E = 1.(1)
But p(ε) is in Cε, too; so

(2)

⎧⎪⎪⎨⎪⎪⎩
(1 + ε)n−i

(
α1(ε)2 + · · ·+ αi(ε)2

)
+ (1 + ε + ε2)−i

(
αi+1(ε)2 + · · ·+ αn(ε)2

)
≤ 1

Subtracting the former (1) from the latter (2) reveals
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(3)

⎧⎪⎪⎨⎪⎪⎩
[
(1 + ε)n−i − 1

](
α1(ε)2 + · · ·+ αi(ε)2

)
+
[
(1 + ε + ε2)−i − 1

](
αi+1(ε)2 + · · ·+ αn(ε)2

)
≤ 0

But p(ε) ∈ SE , so a judicious choice of εm ↓ 0 provides xi+1 ∈ SE such that

xi+1 = lim
m→∞

p(εm).

Express xi+1 in terms of {u1, . . . , un}:

xi+1 = ai+1,1u1 + · · ·+ ai+1,nun;

of course, if 1 ≤ k ≤ n, then

ai+1,k = lim
m→∞

αk(εm).

It follows from this and the inequality (2) that xi+1 ∈ S�2n
and so xi+1 is a point of

contact of SE and S�2n
.

A return to the inequality (3) is expected. By the binomial theorem

(1 + ε)n−i − 1 = (n− i)ε + Q(ε)ε2

where Q(ε) is a polynomial in ε; also,

(1 + ε + ε2)−i − 1 =
1

(1 + ε + ε2)i

[
1− (1 + ε + ε2)i

]
=

1
(1 + ε + ε2)i

[
(−i)ε + Q̃(ε)ε2

]
where Q̃(ε) is a polynomial in ε. So the inequality (3) may be rewritten in the
form:[

(n− i)ε + Q(ε)ε2
](

α1(ε)2 + · · ·+ αi(ε)2
)

+
[−iε + Q̃(ε)ε2

(1 + ε + ε2)i

](
αi+1(ε)2 + · · ·+ αn(ε)2

)
≤ 0.

Divide both sides by ε > 0 and let ε follow the path blazed by (εm); the result is

(n− i)
(
a2

i+1,1 + · · ·+ a2
i+1,i

)
+ (−i)

(
a2

i+1,i+1 + · · ·+ a2
i+1,n

)
≤ 0.

Let the dust settle. Look closely and see that(
a2

i+1,1 + · · ·+ a2
i+1,i

)
≤ i

n

(
a2

i+1,1 + · · ·+ a2
i+1,n

)
=

i

n
,

which is what we claimed to be able to show. It’s good to be king. All that’s left
is to find a vector u′

i+1 which when added to {u1, . . . , ui} makes {u1, . . . , ui, u
′
i+1}

orthonormal and such that {u1, . . . , ui, u
′
i+1} spans the same linear subspace of E

that {u1, . . . , ui, xi+1} does. Then to keep this machinery greased and ready for
the next overhaul, extend the orthonormal set {u1, . . . , ui, u

′
i+1} to an orthonormal

basis for E.
Realize that the proof thus far provided linearly independent points x1, . . . , xn

in E so that all have norm one in E and, relative to the Hilbertian norm ‖ ‖2
induced by the ellipsoid of maximal volume inscribed in BE , we have that ‖xi‖2 = 1
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for each i as well. What’s more, if yi is the orthogonal projection of xi onto the
subspace generated by x1, . . . , xi−1, then

‖yi‖2�2n ≤
i− 1

n
.

Put zi = xi − yi and realize that z1, . . . , zn are orthogonal and ‖zi‖�2n
≤ 1 for each

i = 1, . . . , n. Now estimate: If 1 ≤ r ≤ n and (λ1, . . . , λr) ∈ �2r, then∥∥ r∑
i=1

λixi

∥∥ ≤ ∥∥ r∑
i=1

λizi

∥∥+
∥∥ r∑

i=1

λiyi

∥∥.
Take things “one at a time”:∥∥ r∑

i=1

λizi

∥∥ ≤ ∥∥ r∑
i=1

λizi

∥∥
�2r

=
( r∑

i=1

λ2
i ‖zi‖22

)1/2

≤
( r∑

i=1

λ2
i

)1/2
,

and ∥∥ r∑
i=1

λiyi

∥∥ ≤ r∑
i=1

|λi|‖yi‖

≤
( r∑

i=1

|λi|2
)1/2( r∑

i=1

‖yi‖2
)1/2

≤
( r∑

i=1

|λi|2
)1/2( r∑

i=1

(
i− 1

n
)2
)1/2

.

Enough said. �

Corollary 1.6.2. Let X be an infinite dimensional Banach space, k > 1
and r ∈ N. Then one can find x1, . . . , xr ∈ X each of norm one such that
‖(x1, . . . , xr)‖�2weak(X) ≤ k.

Proof. Let n ∈ N be chosen so that n > r and

1 +
r
√

r√
3n
≤ k.

Let E be a linear subspace of X of dimension n. Apply Grothendieck’s version of
the Dvoretzky-Rogers Lemma. �

Theorem 1.6.3 (Grothendieck (1953/1956b), Theorem 2, p. 99). Let X be
an infinite dimensional Banach space, (ai)i a sequence of non-negative reals with
each ai < 1 and 0 = limi ai. Then there is a sequence (xi)i in X such that

(xi)i ∈ �2
∨
⊗ X yet ‖xi‖ = ai for each i.

Proof. Set

α =
1− sup ai

2
.
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α > 0 since limi ai = 0 and each ai < 1. For each k ∈ N let ik be chosen (> ik−1)
such that

ai < α/2k, if i ≥ ik.(4)

Apply Corollary 1.6.2 to find for each k ∈ N vectors yi, for ik−1 + 1 ≤ i ≤ ik, of
norm one such that

‖(yik−1+1, . . . , yin
)‖�2weak(X) ≤

1
1− α

.(5)

Put xi = aiyi so that ‖xi‖ = ai. Assume k ≥ 2. Denote by Xk the sequence in X
given by

Xk,n =

⎧⎨⎩ 0 if n ≤ ik−1,
xn if ik−1 + 1 ≤ n ≤ ik,
0 if ik < n.

Notice that, thanks to (4) and (5),

‖(Xk,n)n‖�2weak(X) ≤
α

2k−1

1
1− α

,

X1? X1 = (x1, . . . , xi1 , 0, 0, . . .). Naturally, since

‖(X1,n)n‖�2weak(X) ≤
sup ai

1− α
=

1− 2α

1− α
,

(Xk) is an absolutely summable sequence in the Banach space �2
∨
⊗ X whose sum

X satisfies

‖(Xn)‖�2weak(X) ≤
∑

k

‖(Xk,n)n‖�2weak(X) ≤
1

1− α

(
1− 2α + α

∑
k

21−k
)

= 1.

It is clear that X = (xn)n and so this proof is complete. �

Remark: Since �2
∨
⊗ X ⊆ co

∨
⊗ X = co(X), the condition that (ai)i ∈ co is

essential. The point is that each such sequence serves as the term-by-term length

of some sequence in �2
∨
⊗ X — regardless of how slowly (ai)i tends to zero.

1.6.2. Consequences.

Theorem 1.6.4 (Grothendieck (1953/1956b), Theorem 3, p. 100). Let X be an
infinite dimensional Banach space, 1 ≤ p ≤ 2 and q : 1

q = 1
p −

1
2 (thereby forcing

q to be 2 ≤ q ≤ ∞). Then for any sequence (ai)i of non-negative reals with

(ai)i ∈ �q (respectively co if q = +∞), one can find (xi)i ∈ �p
∨
⊗ X such that

‖xi‖ = ai. What’s more, given ε > 0, (xi)i ∈ �p
∨
⊗ X can be chosen so that

‖(xi)i‖�p
weak

≤ ‖(ai)i‖q + ε.

Proof. Suppose 2 ≤ q <∞, (ai)i ∈ �q and ε > 0. There exists (λi)i ∈ co such
that 0 ≤ λi ≤ 1 for all i and ∥∥∥(ai

λi

)
i

∥∥∥
q
≤ ‖(ai)i‖q + ε.

Let bi = ai

λi
and let (yi)i ∈ B

�2
∨
⊗X

be chosen so that ‖yi‖ = λi for each i; Theorem
1.6.3 lets us do this. Set

xi = biyi.
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Then ‖xi‖ = ai. Hölder’s inequality alerts us to (xi)i’s membership in �p
∨
⊗ X as

well as
‖(xi)i‖�p

weak
≤ ‖(bi)i‖q‖(yi)i‖�2weak

≤ ‖(ai)i‖q + ε.

Tra la, tra la! �
Of course the case where q =∞ is covered already by Theorem 1.6.3.

Corollary 1.6.5. Let X be an infinite dimensional Banach space and (ai)i

be a square summable sequence of non-negative reals. Then there exists an uncon-
ditionally summable sequence (xi)i in X so that ‖xi‖ = ai. What’s more, given
ε > 0 the unconditionally summable sequence (xi)i can be chosen so that

‖(xi)i‖�1weak
≤ ‖(ai)i‖2 + ε.

Corollary 1.6.6. Let X be an infinite dimensional Banach space and 1 ≤
p < ∞. Then �p

∨
⊗ X and �p(X) are not the same. Hence, there is a weakly p-

summable sequence of members of X which is not p-summable.

Proof. Suppose 1 ≤ p < 2. Theorem 1.6.4 kicks in: if 1
q = 1

p −
1
2 , then p < q

and so we can choose (ai)i ∈ �q\�p and apply Theorem 1.6.4.
Suppose 2 ≤ p < ∞. Let (ai)i ∈ co\�p. Use Theorem 1.6.3 to choose (xi)i so

that (xi)i ∈ �2
∨
⊗ X and ‖xi‖ = |ai|. Then (xi)i ∈ �p

∨
⊗ X, but

∑
‖xi‖p = +∞. �

Remark: The case p = ∞ doesn’t fall under the spell of the Dvoretzky-Rogers
schtick.

Of course �∞
∨
⊗ X ⊆ �∞(X), but they’re never equal in the case dim X = ∞

thanks to the F. Riesz Lemma. On the other hand, co

∨
⊗ X = co(X).

A dual version of Theorem 1.6.4 holds.

Theorem 1.6.7 (Grothendieck (1953/1956b), Theorem 4, p. 101). Let X be
an infinite dimensional Banach space, 2 ≤ p′ ≤ ∞ and q′ : 1

q′ = 1
p′ + 1

2 (forcing
q′ : 1 ≤ q′ ≤ 2). Suppose (ai)i is a sequence of non-negative reals that is not in
�q′

. Then there is a sequence (zi)i of members of X so that ‖zi‖ = ai and (zi)

is not in �p′ ∧
⊗ X.

Proof. Notationally speaking, let p, q be given by
1
p

+
1
p′

= 1 =
1
q

+
1
q′

.

Then
1
q

=
1
p

+
1
p′
− 1

q′
=

1
p
− 1

2
,

and so the spectre of Theorem 1.6.4 rises. Suppose (contrarily) that any time (xi)i

is a sequence of members of X for which ‖xi‖ = ai for each i, then (xi)i ∈ �p′ ∧
⊗ X.

Then whenever (yi) is a sequence of members of X and ‖yi‖ ≤ ai, there would be

(λi)i ∈ B�∞ so that yi = λixi for some sequence (xi)i ∈ �p′ ∧
⊗ X; it immediately

follows that (yi)i ∈ �p′ ∧
⊗ X, too. So given any (zi)i ∈ co(X) = co

∨
⊗ X the sequence

(aizi)i is in �p′ ∧
⊗ X: an operator is born; denote by u the operator from co

∨
⊗ X

to �p′ ∧
⊗ X given by

u
(
(zi)i

)
= (aizi)i.
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On co ⊗X, u = v ⊗ idX where v : co → �p′
is given by v

(
(λi)i

)
= (aiλi)i, so that

u∗ =
(
v ⊗ idX

)∗ takes
(
�p′ ∧
⊗ X

)∗ into
(
co

∨
⊗ X

)∗. But (co

∨
⊗ X)∗ = co(X)∗ =

�1(X∗) = �1
∧
⊗ X∗ and �p

∨
⊗ X∗ lies isometrically inside

(
�p′ ∧

⊗ X
)∗; further,

on �p ⊗ X∗, (v ⊗ idX)∗ is quickly seen to coincide with v∗ ⊗ idX∗ and so u∗ acts

continuously from �p
∨
⊗ X∗ to �1

∧
⊗ X∗; in fact, if (x∗

i )i ∈ �p
∨
⊗ X∗, then u∗((x∗

i )i

)
is just the sequence (aix

∗
i )i. Hence we have that for each (x∗

i )i ∈ �p
∨
⊗ X∗,∑

ai‖x∗
i ‖ = ‖u∗((x∗

i )i

)
‖�1(X∗) <∞.(6)

Wow! Since (ai)i �∈ �q′
there is a (bi)i ∈ �q such that∑

ai|bi| = +∞.

Apply Theorem 1.6.4 to find a sequence (w∗
i )i ∈ �p

∨
⊗ X∗ such that ‖w∗

i ‖ = |bi|.
Plainly, ∑

i

ai‖w∗
i ‖ = +∞.

But (w∗
i )i ∈ �p

∨
⊗ X∗ brings (6) to bear and so(∑

ai|bi| =
)∑

ai‖w∗
i ‖ <∞.

OOPS! Our contrariness leads to disaster. We must cease and desist in contrary
behavior and conclude to the verity of the theorem. �

Corollary 1.6.8. Let X be an infinite dimensional Banach space.
(1) If (ai)i is a sequence of non-negative reals that is not summable, then there

is a sequence (xi)i of members of X with ‖xi‖ = ai yet (xi)i �∈ �2
∧
⊗ X.

(2) If (ai)i is a sequence of non-negative reals that is not square summable,
then there is a sequence (xi)i of members of X with ‖xi‖ = ai, yet

(xi)i �∈ �∞
∧
⊗ X.

Proof. (1) Apply Theorem 1.6.7 to the case q′ = 1 and p′ = 2.
(2) Apply Theorem 1.6.7 to the case q′ = 2 and p′ = +∞. �
Corollary 1.6.9. Let X be an infinite dimensional Banach space and 1 <

p <∞. Then �p(X) �= �p
∧
⊗ X.

Proof. Suppose 2 < p. Take (ai)i ∈ �p\�q where 1
q = 1

p + 1
2 . Apply Theorem

1.6.7 to find a sequence of members of X so ‖xi‖ = |ai|, yet (xi)i �∈ �p
∧
⊗ X.

Suppose 1 < p ≤ 2. Choose (ai)i ∈ �p\�1. Corollary 1.6.8(1) provides us with

a sequence (xi)i of members of X so that ‖xi‖ = |ai|, yet (xi)i �∈ �2
∧
⊗ X. On the

one hand, ‖xi‖ = |ai| so (xi)i ∈ �p(X) while, on the other hand, p < 2 puts �p
∧
⊗ X

inside (set-wise) �2
∧
⊗ X and so (xi)i �∈ �p

∧
⊗ X. �

To summarize, we have the following:

Theorem 1.6.10. If 1 < p < ∞ and X is an infinite dimensional Banach
space, then

�p
∧
⊗ X � �p(X) � �p

∨
⊗ X.



66 1. BASICS ON TENSOR NORMS

Notes:

(1) As we mentioned before, the sequences in �p
∨
⊗ X are exactly the sequences

in the subspace �̌p
weak(X) of �p

weak(X). An obvious question is: Which

sequences in X correspond to the elements of �p
∧
⊗ X? To answer this

question we consider the space �p〈X〉 of all sequences (xn) in X such that(
x∗

n(xn)
)
∈ �1 for all (x∗

n) ∈ �p′

weak(X
∗). Here, as always, p′ is the index

conjugate to p. It is not difficult to show that the space �p〈X〉 is a Banach
space with respect to the norm defined by

‖(xn)‖�p〈X〉 = sup{
∑

n

|x∗
n(xn)| : ‖(x∗

n)‖
�p′
weak(X∗)

≤ 1}.

The space �p〈X〉 was introduced by Cohen (1973).

(a) For 1 < p < ∞ the spaces �p〈X〉 and �p
∧
⊗ X are isometrically

isomorphic.

(b) �1〈X〉 = �1(X) = �1
∧
⊗ X (isometrically).

We refer to [Fourie and Röntgen (2003)] and [Bu and Diestel (2001)] for
details.

(2) There are large classes of tensor norms that are somewhat related to the
norms in �p(X) and �p

weak(X). For u ∈ X⊗Y we define for any 1 ≤ p ≤ ∞:

dp(u) = inf ‖(xi)‖�p(X)‖(yi)‖�p′
weak(Y )

,

wp(u) = inf ‖(xi)‖�p
weak(X)‖(yi)‖�p′

weak(Y )

where in each of the cases the infimum is taken over all representations of
u =

∑n
i=1 xi ⊗ yi where xi ∈ X and yi ∈ Y , n ∈ N.

These tensor norms together with various generalizations (and the
associated dual and transposed norms) were studied by various authors,
in particular, Saphar (1970), Chevet (1969) and Lapresté (1976). In
case p ∈ {1, 2,∞} these norms (together with their associated dual and
transposed norms) are of particular interest, since they are equivalent to
some of Grothendieck’s “natural” tensor norms. Although most of this
monograph is devoted to the study of these natural tensor norms (see
Theorem 4.4.1, p. 163), we shall give no further attention to the norms gp

and wp, and rather refer the interested reader to the mentioned references
and to the book of Defant and Floret (1993), which contains a detailed
exposition.

The α-integral and α-nuclear operators associated to gp and wp and
their duals and transposes are obviously very interesting as well. The
study of these operators led to factorization schemes similar to those of
Grothendieck which occur so often later on. Again we refer the interested
reader to the papers [Persson and Pietsch (1969)], [Gordon, Lewis, and
Retherford (1973)] and [Fourie and Swart (1981)] and to the books of
Defant and Floret (1993) and Diestel, Jarchow, and Tonge (1995).


