
Chapter 1 RECREATIONAL

MATHEMATICS

Recreational problems have survived,
not because they were fostered by the
textbook writers, but because of their
inherent appeal to our love of mystery.

Vera Sanford

Before taking up the noteworthy mathematical thinkers and their memo-
rable problems, a brief overview of the history of mathematical recreations
may benefit the reader. For more historical details see, e.g., the books [6],
[118], [133, Vol. 4], [153, Ch. VI], [167, Vol. II]. According to V. Sanford
[153, Ch. VI], recreational mathematics comprises two principal divisions:
those that depend on object manipulation and those that depend on com-
putation.
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Figure 1.1. The oldest magic square—lo-shu

Perhaps the oldest known example of the first group is the magic square
shown in the figure above. Known as lo-shu to Chinese mathematicians
around 2200 b.c., the magic square was supposedly constructed during the
reign of the Emperor Yii (see, e.g., [61, Ch. II], or [167, Vol. I, p. 28]).
Chinese myth [27] holds that Emperor Yii saw a tortoise of divine creation
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2 1. Recreational Mathematics

swimming in the Yellow River with the lo-shu, or magic square figure, adorn-
ing its shell. The figure on the left shows the lo-shu configuration where the
numerals from 1 to 9 are composed of knots in strings with black knots for
even and white knots for odd numbers.

The Rhind (or Ahmes) papyrus,1 dating to around 1650 b.c., suggests
that the early Egyptians based their mathematics problems in puzzle form.
As these problems had no application to daily life, perhaps their main pur-
pose was to provide intellectual pleasure. One of the earliest instances,
named “As I was going to St. Ives”, has the form of a nursery rhyme (see
[153]):

“Seven houses; in each are 7 cats; each cat kills 7 mice; each mouse would have
eaten 7 ears of spelt; each ear of spelt will produce 7 hekat. What is the total of
all of them?”2

The ancient Greeks also delighted in the creation of problems strictly for
amusement. One name familiar to us is that of Archimedes, whose the cattle
problem appears on pages 41 to 43. It is one of the most famous problems
in number theory, whose complete solution was not found until 1965 by a
digital computer.

The classical Roman poet Virgil (70 b.c.–19 b.c.) described in the Aeneid
the legend of the Phoenician princess Dido. After escaping tyranny in her
home country, she arrived on the coast of North Africa and asked the local
ruler for a small piece of land, only as much land as could be encompassed
by a bull’s hide. The clever Dido then cut the bull’s hide into the thinnest
possible strips, enclosed a large tract of land and built the city of Carthage
that would become her new home. Today the problem of enclosing the max-
imum area within a fixed boundary is recognized as a classical isoperimetric
problem. It is regarded as the first problem in a new mathematical disci-
pline, established 17 centuries later, as calculus of variations. Jacob Steiner’s
elegant solution of Dido’s problem is included in this book.

Another of the problems from antiquity is concerned with a group of
men arranged in a circle so that if every 𝑘th man is removed going around
the circle, the remainder shall be certain specified (favorable) individuals.
This problem, appearing for the first time in Ambrose of Milan’s book ca.
370, is known as the Josephus problem, and it found its way not just into
later European manuscripts, but also into Arabian and Japanese books.
Depending on the time and location where the particular version of the
Josephus problem was raised, the survivors and victims were sailors and

1Named after Alexander Henry Rhind (1833–1863), a Scottish antiquarian, layer and

Egyptologist who acquired the papyrus in 1858 in Luxor (Egypt).
2T. Eric Peet’s translation of The Rhind Mathematical Papyrus, 1923.
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smugglers, Christians and Turks, sluggards and scholars, good guys and
bad guys, and so on. This puzzle attracted attention of many outstanding
scientists, including Euler, Tait, Wilf, Graham, and Knuth.

As Europe emerged from the Dark Ages, interest in the arts and sciences
reawakened. In eighth-century England, the mathematician and theologian
Alcuin of York wrote a book in which he included a problem that involved a
man wishing to ferry a wolf, a goat and a cabbage across a river. The solu-
tion shown on pages 240–242 demonstrates how one can solve the problem
accurately by using graph theory. River-crossing problems under specific
conditions and constraints were very popular in medieval Europe. Alcuin,
Tartaglia, Trenchant and Leurechon studied puzzles of this type. A variant
involves how three couples should cross the river in a boat that cannot carry
more than two people at a time. The problem is complicated by the jealousy
of the husbands; each husband is too jealous to leave his wife in the company
of either of the other men.

Four centuries later, mathematical puzzles appear in the third section of
Leonardo Fibonacci’s Liber Abaci, published in 1202. This medieval scholar’s
most famous problem, the rabbit problem, gave rise to the unending sequence
that bears his name: the Fibonacci sequence, or Fibonacci numbers as they
are also known, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . (see pages 12–13).

Yet another medieval mathematician, ibn Khallikan (1211–1282), formu-
lated a brain teaser requiring the calculation of the total number of wheat
grains placed on a standard 8× 8 chessboard. The placement of the grains
must respect the following distribution: 1 grain is placed on the first square,
2 grains on the second, 4 on the third, 8 on the fourth, and so on, doubling
the number for each successive square. The resulting number of grains is
264 − 1, or 18,446,744,073,709,551,615. Ibn Khallikan presented this prob-
lem in the form of the tale of the Indian king Shirham who wanted to reward
the Grand Vizier Sissa ben Dahir for having invented chess. Sissa asked for
the number of grains on the chessboard if each successive position is the next
number in a geometric progression. However, the king could not fulfill Sissa’s
wish; indeed, the number of grains is so large that it is far greater than the
world’s annual production of wheat grains. Speaking in broad terms, ibn
Khallikan’s was one of the earliest chess problems.

Ibn Kallikan’s problem of the number of grains is a standard illustra-
tion of geometric progressions, copied later by Fibonacci, Pacioli, Clavius
and Tartaglia. Arithmetic progressions were also used in these entertaining
problems. One of the most challenging problems appeared in Buteo’s book
Logistica (Lyons, 1559, 1560):3

3The translation from Latin is given in [153], p. 64.
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“A mouse is at the top of a poplar tree 60 braccia4 high, and a cat is on the
ground at its foot. The mouse descends 1/2 of a braccia a day and at night it
turns back 1/6 of a braccia. The cat climbs one braccia a day and goes back 1/4
of a braccia each night. The tree grows 1/4 of a braccia between the cat and the
mouse each day and it shrinks 1/8 of a braccia every night. In how many days will
the cat reach the mouse and how much has the tree grown in the meantime, and
how far does the cat climb?”

At about the same time Buteo showed enviable knowledge of the general
laws of permutations and combinations; moreover, he constructed a combi-
nation lock with movable cylinders displayed in Figure 1.2.5

Figure 1.2. Buteo’s combination lock (1559)

In 1512 Guarini devised a chessboard problem in which the goal is to effect
the exchange of two black and two white knights, with each pair placed at

the corners of a 3× 3 chessboard (see figure left),
in the minimum number of moves. The solution
of this problem by using graph theory is shown on
pages 274–276. People’s interest in chess problems
and the challenge they provide has lasted from the
Middle Ages, through the Renaissance and to the
present day.

While the Italian mathematicians Niccolo Tartaglia (1500–1557) and Gi-
rolamo Cardano (1501–1576) labored jointly to discover the explicit formula
for the solution of cubic algebraic equations, they also found time for recre-
ational problems and games in their mathematical endeavors. Tartaglia’s
General Trattato (1556) described several interesting tasks; four of which,

4Braccia is an old Italian unit of length.
5Computer artwork, sketched according to the illustration from Buteo’s Logistica (Ly-

ons, 1559, 1560).
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the weighing problem, the division of 17 horses, the wine and water problem,
and the ferryboat problem, are described on pages 20, 24, 25 and 173.

Girolamo Cardano was one the most famous scientists of his time and
an inventor in many fields. Can you believe that the joint connecting the
gear box to the rear axle of a rear wheel drive car is known to the present
day by a version of his name—the cardan shaft? In an earlier book, De
Subtilitate (1550), Cardano presented a game, often called the Chinese ring
puzzle (Figure 1.3), that made use of a bar with several rings on it that
remains popular even now. The puzzle’s solution is closely related to Gray’s
error-correcting binary codes introduced in the 1930s by the engineer Frank
Gray. The Chinese ring puzzle also bears similarities to the Tower of Hanoi,
invented in 1883 by Edouard Lucas (1842–1891), which is also discussed later
in the book.

Figure 1.3. Chinese ring puzzle

Many scholars consider Problèms Plaisans et Délectables, by Claude Gas-
par Bachet (1581–1638), to be the first book on mathematical puzzles and
tricks. Most of the famous puzzles and curious problems invented before the
seventeenth century may be found in Bachet’s delightful book. In addition
to Bachet’s original “delectable” problems, the book contains puzzles by Al-
cuin of York, Pacioli, Tartaglia and Cardano, and other puzzles of Asian
origin. Bachet’s book, first published in 1612 and followed by the second
edition published in 1624, probably served as the inspiration for subsequent
works devoted to mathematical recreation.

Other important writers on the subject include the Jesuit scholar Jean
Leurechon (1591–1670), who published under the name of Hendrik van Et-
ten, and Jacques Ozanam (1640–1717). Etten’s work, Mathematical Recre-
ations, or a Collection of Sundry Excellent Problems Out of Ancient and
Modern Philosophers Both Useful and Recreative, first published in French
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in 1624 with an English translation appearing in 1633, is a compilation of
mathematical problems interspersed with mechanical puzzles and experi-
ments in hydrostatics and optics that most likely borrowed heavily from
Bachet’s work.

Leonhard Euler (1707–1783), one of the world’s greatest mathematicians
whose deep and exacting investigations led to the foundation and develop-
ment of new mathematical disciplines, often studied mathematical puzzles
and games. Euler’s results from the seven bridges of Königsberg problem
(pages 230–232) presage the beginnings of graph theory. The thirty-six offi-
cers problem and orthogonal Latin squares (or Eulerian squares), discussed
by Euler and later mathematicians, have led to important work in combina-
torics. Euler’s conjecture on the construction of mutually orthogonal squares
found resolution nearly two hundred years after Euler himself initially posed
the problem. These problems, and his examination of the chessboard knight’s
re-entrant tour problem, are described on pages 188 and 258. A knight’s re-
entrant path consists of moving a knight so that it moves successively to each
square once and only once and finishes its tour on the starting square. This
famous problem has a long history and dates back to the sixth century in
India. P. M. Roget’s half-board solution (1840), shown in Figure 1.4, offers
a remarkably attractive design.

Figure 1.4. Knight’s re-entrant path—Roget’s solution

In 1850 Franz Nauck posed another classic chess problem, the eight queens
problem, that calls for the number of ways to place eight queens on a chess-
board so that no two queens attack each other. Gauss gave a solution of this
problem, albeit incomplete in the first attempts. Further details about the
eight queens problem appear on pages 269–273. In that same year, Thomas P.
Kirkman (1806–1895) put forth the schoolgirls problem presented on pages
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189 to 192. Several outstanding mathematicians, Steiner, Cayley and Sylve-
ster among them, dealt with this combinatorial problem and other related
problems. Although some of these problems remain unsolved even now,
the subject continues to generate important papers on combinatorial design
theory.

In 1857 the eminent Irish mathematician William Hamilton (1788–1856)
invented the icosian game in which one must locate a path along the edges of
a regular dodecahedron that passes through each vertex of the dodecahedron
once and only once (see pages 234–237). As in Euler’s Königsberg bridges
problem, the Hamiltonian game is related to graph theory. In modern ter-
minology, this task requires a Hamiltonian cycle in a certain graph and it
is one of the most important open problems not only in graph theory but
in the whole mathematics. The Hamiltonian cycle problem is closely con-
nected to the famous traveling salesman problem that asks for an optimal
route between some places on a map with given distances.

Figure 1.5. The Tower of Hanoi

The French mathematician François Edouard Lucas, best known for his
results in number theory, also made notable contributions to recreational
mathematics, among them, as already mentioned, the Tower of Hanoi (Fig-
ure 1.5), which is covered on pages 196–199, and many other amusing puz-
zles. Lucas’ four-volume book Récréations Mathématiques (1882–94), to-
gether with Rouse Ball’s, Mathematical Recreations and Problems, published
in 1892, have become classic works on recreational mathematics.
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No discussion of recreational mathematics would be complete without
including Samuel Loyd (1841–1911) and Henry Ernest Dudeney (1857–1931),
two of the most renowned creators of mathematical diversions. Loyd and
Dudeney launched an impressive number of games and puzzles that remain
as popular now as when they first appeared. Loyd’s ingenious toy-puzzle
the “15 Puzzle” (known also as the “Boss Puzzle”, or “Jeu de Taquin”) is
popular even today. The “15 Puzzle” (figure below) consists of a square
divided into 16 small squares and holds 15 square blocks numbered from 1

to 15. The task is to start from a given initial
arrangement and set these numbered blocks
into the required positions (say, from 1 to 15),
using the vacant square for moving blocks. For
many years after its appearance in 1878, peo-
ple all over the world were obsessed by this
toy-puzzle. It was played in taverns, factories,
in homes, in the streets, in the royal palaces,
even in the Reichstag (see page 2430 in [133,
Vol. 4].

Martin Gardner (b. 1914 Tulsa, OK), most certainly deserves mention
as perhaps the greatest twentieth-century popularizer of mathematics and
mathematical recreations. During the twenty-five years in which he wrote
his Mathematical Games column for the Scientific American, he published
quantities of amusing problems either posed or solved by notable mathe-
maticians.
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In many cases, mathematics as well as chess,
is an escape from reality.

Stanislaw Ulam

Chess is the gymnasium of the mind.
Blaise Pascal

The chessboard is the world,
the pieces are the phenomena of the Universe,

the rules of the game are what we call the laws of Nature.
Thomas Huxley

Puzzles concern the chessboards (of various dimensions and different
shapes) and chess pieces have always lent themselves to mathematical recre-
ations. Over the last five centuries so many problems of this kind have
arisen. Find a re-entrant path on the chessboard that consists of moving a
knight so that it moves successively to each square once and only once and
finish its tour on the starting square. How to place 8 queens on the 8 × 8
chessboard so that no queen can be attacked by another? For many years I
have been interested in these types of chess-math problems and, in 1997, I
wrote the book titled Mathematics and Chess (Dover Publications) [138] as
a collection of such problems. Some of them are presented in this chapter.

Mathematics, the queen of the sciences, and chess, the queen of games,
share an axiomatical approach and an abstract way of reasoning in solving
problems. The logic of the rules of play, the chessboard’s geometry, and the
concepts “right” and “wrong” are reminiscent of mathematics. Some math-
ematical problems can be solved in an elegant manner using some elements
of chess. Chess problems and chess-math puzzles can ultimately improve
analytical reasoning and problem solving skills.

In its nature, as well as in the very structure of the game, chess resembles
several branches of mathematics. Solutions of numerous problems and puz-
zles on a chessboard are connected and based on mathematical facts from
graph theory, topology, number theory, arithmetic, combinatorial analysis,
geometry, matrix theory, and other topics. In 1913, Ernst Zermelo used

257
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these connections as a basis to develop his theory of game strategies, which
is considered as one of the forerunners of game theory.

The most important mathematical challenge of chess has been how to de-
velop algorithms that can play chess. Today, computer engineers, program-
mers and chess enthusiasts design chess-playing machines and computer pro-
grams that can defeat the world’s best chess players. Recall that, in 1997,
IBM’s computer Deep Blue beat Garry Kasparov, the world champion of
that time.

Many great mathematicians were interested in chess problems: Euler,
Gauss, Vandermonde, de Moivre, Legendre. On the other hand, several
world-class chess players have made contributions to mathematics, before
all, Emanuel Lasker. One of the best English contemporary grandmasters
and twice world champion in chess problem solving, John Nunn, received his
Ph.D. in mathematics from Oxford University at the age of twenty-three.

The aim of this chapter is to present amusing puzzles and tasks that
contain both mathematical and chess properties. We have mainly focused on
those problems posed and/or solved by great mathematicians. The reader
will see some examples of knight’s re-entrant tours (or “knight’s circles”)
found by Euler, de Moivre and Vandermond. We have presented a variant
of knight’s chessboard (uncrossed) tour, solved by the outstanding computer
scientist Donald Knuth using a computer program. You will also find the
famous eight queens problem, that caught Gauss’ interest. An amusing
chessboard problem on non-attacking rooks was solved by Euler.

None of the problems and puzzles exceed a high school level of difficulty;
advanced mathematics is excluded. In addition, we presume that the reader
is familiar with chess rules.

*

* *

Abraham de Moivre (1667–1754) (→ p. 304)

Pierre de Montmort (1678–1733) (→ p. 304)

Alexandre Vandermonde (1735–1796) (→ p. 305)

Leonhard Euler (1707–1783) (→ p. 305)

Knight’s re-entrant route

Among all re-entrant paths on a chessboard, the knight’s tour is doubtless
the most interesting and familiar to many readers.
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Problem 10.1. Find a re-entrant route on a standard 8 × 8 chessboard
which consists of moving a knight so that it moves successively to each square
once and only once and finishes its tour on the starting square.

Closed knight’s tours are often called “knight’s circles”. This remarkable
and very popular problem was formulated in the sixth century in India [181].
It was mentioned in the Arab, Mansubas1, of the ninth century a.d. There
are well-known examples of the knight’s circle in the Hamid I Mansubas (Is-
tanbul Library) and the Al-Hakim Mansubas (Ryland Library, Manchester).
This task has delighted people for centuries and continues to do so to this
day. In his beautiful book Across the Board: The Mathematics of Chess-
board Problems [181] J. J. Watkins describes his unforgettable experience at
a Broadway theater when he was watching the famous sleight-of-hand artist
Ricky Jay performing blindfolded a knights tour on stage.

The knight’s circle also interested such great mathematicians as Euler,
Vandermonde, Legendre, de Moivre, de Montmort, and others. De Mont-
mort and de Moivre provided some of the earliest solutions at the beginning
of the eighteenth century. Their method is applied to the standard 8 × 8
chessboard divided into an inner square consisting of 16 cells surrounded by

Figure 10.1. Knight’s tour—de Moivre’s solution

an outer ring of cells two deep. If the knight starts from a cell in the outer
ring, it always moves along this ring filling it up and continuing into an
inner ring cell only when absolutely necessary. The knight’s tour, shown in

1The Mansubas, a type of book, collected and recorded the games, as well as remark-
ably interesting positions, accomplished by well-known chess players.
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Figure 10.1, was composed by de Moivre (which he sent to Brook Taylor).
Surprisingly, the first 23 moves are in the outer two rows. Although it passes
all 64 cells, the displayed route is not a re-entrant route.

Even though L. Bertrand of Geneva initiated the analysis, according to
Mémoires de Berlin for 1759, Euler made the first serious mathematical
analysis of this subject. In his letter to the mathematician Goldbach (April
26, 1757), Euler gave a solution to the knight’s re-entrant path shown in
Figure 10.2.

Figure 10.2. Euler’s knight’s circle Figure 10.3. Euler’s half-board solution

solution

Euler’s method consists of a knight’s random movement over the board
as long as it is possible, taking care that this route leaves the least possible
number of untraversed cells. The next step is to interpolate these untraversed
cells into various parts of the circuit to make the re-entrant route. Details
on this method may be found in the books, Mathematical Recreations and
Essays by Rouse Ball and Coxeter [150], Across the Board by J. J. Watkins
[181] and In the Czardom of Puzzles (in Russian) [107] by E. I. Ignat’ev, the
great Russian popularizer of mathematics. Figure 10.3 shows an example of
Euler’s modified method where the first 32 moves are restricted to the lower
half of the board, then the same tour is repeated in a symmetric fashion for
the upper half of the board.

Vandermonde’s approach to solving the knight’s re-entrant route uses frac-
tions of the form 𝑥/𝑦, where 𝑥 and 𝑦 are the coordinates of a traversed cell.2

2L’Historie de l’Académie des Sciences for 1771, Paris 1774, pp. 566–574.
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For example, 1/1 is the lower left corner square (a1) and 8/8 is the upper
right corner square (h8). The values of 𝑥 and 𝑦 are limited by the dimen-
sions of the chessboard and the rules of the knight’s moves. Vandermonde’s
basic idea consists of covering the board with two or more independent paths
taken at random. In the next step these paths are connected. Vandermonde
has described a re-entrant route by the following fractions (coordinates):

5/5, 4/3, 2/4, 4/5, 5/3, 7/4, 8/2, 6/1, 7/3, 8/1, 6/2, 8/3, 7/1, 5/2, 6/4, 8/5,

7/7, 5/8, 6/6, 5/4, 4/6, 2/5, 1/7, 3/8, 2/6, 1/8, 3/7, 1/6, 2/8, 4/7, 3/5, 1/4,

2/2, 4/1, 3/3, 1/2, 3/1, 2/3, 1/1, 3/2, 1/3, 2/1, 4/2, 3/4, 1/5, 2/7, 4/8, 3/6,

4/4, 5/6, 7/5, 8/7, 6/8, 7/6, 8/8, 6/7, 8/6, 7/8, 5/7, 6/5, 8/4, 7/2, 5/1, 6/3.

The usual chess notation corresponding to the above fraction notation would
be e5, d3, b4, d5, e3, and so on.

An extensive literature exists on the knight’s re-entrant tour.3 In 1823,
H. C. Warnsdorff4 provided one of its most elegant solutions. His method
is very efficient, not only for the standard chessboard but also for a general
𝑛× 𝑛 board as well.

Recalling Problem 9.4 we immediately conclude that the knight’s circles
are in fact Hamiltonian cycles. There are 13,267,364,410,532 closed knight’s
tours, calculated in 2000 by Wegener [183]. The same number was previously
claimed by Brendan McKay in 1997.5 One of the ways to find a knight’s

3For instance, P. Volpicelli, Atti della Reale Accademia dei Lincei (Rome, 1872); C.F.

de Jaenisch, Applications de l’Analyse mathématique au Jeu des Echecks, 3 vols. (Pet-

rograd, 1862–63); A. van der Linde, Geschichte und Literatur des Schachspiels, vol. 2

(Berlin, 1874); M. Kraitchik, La Mathématique des Jeux (Brussels, 1930); W. W. Rouse

Ball, Mathematical Recreations and Essays, rev. ed. (Macmillan, New York 1960); E.

Gik, Mathematics on the Chessboard (in Russian, Nauka, Moscow 1976); E. I. Ignat’ev,
In the Czardom of Puzzles (in Russian, Nauka, Moscow 1979); D’Hooge, Les Secrets du

cavalier (Bruxelles-Paris, 1962); M. Petković, Mathematics and Chess, Dover Publica-

tions, Mineola (1997); I. Wegener, Branching Programs and Binary Decision Diagrams,

SIAM, Philadelphia (2000); J. J. Watkins, Across the Board: The Mathematics of Chess-

board Problems, Princeton University Press, Princeton and Oxford (2004); N. D. Elkies,
R. P. Stanley, The mathematical knight, Mathematical Intellegencer 22 (2003), 22–34; A.

Conrad, T. Hindrichs, H. Morsy, I. Wegener, Solution of the knight’s Hamiltonian path

problem on chessboards, Discrete Applied Mathematics 50 (1994), 125–134.
4Des Rösselsrpunges einfachste und allgemeinste Lösung, Schalkalden 1823.
5A powerful computer, finding tours at a speed of 1 million tours per second, will have

to run for more than 153 days and nights to reach the number of tours reported by McKay
and Wegener.
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tour is the application of backtracking algorithms6, but this kind of search
is very slow so that even very powerful computers need considerable time.
Another algorithm developed by A. Conrad et al. [40] is much faster and
finds the knight’s re-entrant tours on the 𝑛× 𝑛 board for 𝑛 ≥ 5.

An extensive study of the possibility of the knight’s re-entrant routes on
a general 𝑚 × 𝑛 chessboard can be found in [181]. A definitive solution
was given by Allen Schwenk [156] in 1991, summarized in the form of the
following theorem.

Theorem 10.1 (Schwenk). An 𝑚×𝑛 chessboard (𝑚 ≤ 𝑛) has a knight’s
tour unless one or more of the following three conditions hold:

(i) 𝑚 and 𝑛 are both odd;

(ii) 𝑚 = 1, 2, or 4; or

(iii) 𝑚 = 3 and 𝑛 = 4, 6, or 8.

One more remark. If a knight’s closed tour exists, then it is obvious that
any square on the considered chessboard can be taken as the starting point.

It is a high time for the reader to get busy and try to find the solution to
the following problem.

Problem 10.2.* Prove the impossibility of knight’s tours for 4×𝑛 boards.

The previous problem tell us that a knight’s tour on a 4 × 4 board is
impossible. The question of existence of such a tour for the three-dimensional
4× 4× 4 board, consisting of four horizontal 4× 4 boards which lie one over
the other, is left to the reader.

Problem 10.3.* Find a knight’s re-entrant tour on a three-dimensional
4× 4× 4 board.

Many composers of the knight’s circles have constructed re-entrant paths
of various unusual and intriguing shapes while also incorporating certain
esthetic elements or other features. Among them, magic squares using a
knight’s tour (not necessarily closed) have attracted the most attention.
J. J. Watkins calls the quest for such magic squares the Holy Grail. The
Russian chess master and officer de Jaenisch (1813–1872) composed many
notable problems concerning the knight’s circles. Here is one of them [138,
Problem 3.5], just connected with magic squares.

6A backtracking algorithm searches for a partial candidate to the solution step by step

and eliminates this candidate when the algorithm reaches an impasse, then backing up

a number of steps to try again with another partial candidate—the knight’s path in this
particular case.
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Problem 10.4. Let the successive squares that form the knight’s re-
entrant path be denoted by the numbers from 1 to 64 consecutively, 1 being
the starting square and 64 being the square from which the knight plays its
last move, connecting the squares 64 and 1. Can you find a knight’s re-
entrant path such that the associated numbers in each row and each column
add up to 260?

The first question from the reader could be: Must the sum be just 260?
The answer is very simple. The total sum of all traversed squares of the
chessboard is

1 + 2 + ⋅ ⋅ ⋅+ 64 =
64 ⋅ 65

2
= 2,080,

and 2,080 divided by 8 gives 260. It is rather difficult to find magic or “semi-
magic squares” (“semi-” because the sums over diagonals are not taken into
account), so we recommend Problem 10.4 only to those readers who are
well-versed in the subject. One more remark. De Jaenisch was not the first
who constructed the semi-magic squares. The first semi-magic knight’s tour,
shown in Figure 10.4, was composed in 1848 by William Beverley, a British
landscape painter and designer of theatrical effects.

There are 280 distinct arithmetical semi-magic tours (not necessarily
closed). Taking into account that each of these semi-magic tours can be
oriented by rotation and reflection in eight different ways, a total number of
semi-magic squares is 2,240 (= 280× 8).

Only a few knight’s re-entrant paths possess the required “magic” prop-
erties. One of them, constructed by de Jaenisch, is given in Figure 10.5.

1 30 47 52 5 28 43 54
48 51 2 29 44 53 6 27
31 46 49 4 25 8 55 42
50 3 32 45 56 41 26 7
33 62 15 20 9 24 39 58
16 19 34 61 40 57 10 23
63 14 17 36 21 12 59 38
18 35 64 13 60 37 22 11

63 22 15 40 1 42 59 18
14 39 64 21 60 17 2 43
37 62 23 16 41 4 19 58
24 13 38 61 20 57 44 3
11 36 25 52 29 46 5 56
26 51 12 33 8 55 30 45
35 10 49 28 53 32 47 6
50 27 34 9 48 7 54 31

Figure 10.4. Beverley’s tour Figure 10.5. De Jaenisch’s tour

The question of existence of a proper magic square (in which the sums
over the two main diagonals are also equal to 260) on the standard 8 × 8
chessboard has remained open for many years. However, in August 2003,
Guenter Stertenbrink announced that an exhaustive search of all possibilities
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using a computer program had led to the conclusion that no such knight’s
tour exists (see Watkins [181]).

Our discussion would be incomplete without addressing the natural ques-
tion of whether a magic knight’s tour exists on a board of any dimension
𝑛 × 𝑛. Where there is magic, there is hope. Indeed, it has been proved re-
cently that such magic tours do exist on boards of size 16 × 16, 20 × 20,
24× 24, 32× 32, 48× 48, and 64× 64 (see [181]).

The following problem concerns a knight’s tour which is closed, but in
another sense. Namely, we define a closed knight’s route as a closed path
consisting of knight’s moves which do not intersect and do not necessarily
traverse all squares. For example, such a closed route is shown in Figure
10.13.

Problem 10.5.* Prove that the area enclosed by a closed knight’s route
is an integral multiple of the area of a square of the 𝑛×𝑛 (𝑛 ≥ 4) chessboard.

Hint: Exploit the well-known Pick’s theorem which reads: Let 𝐴 be the
area of a non-self-intersecting polygon 𝑃 whose vertices are points of a lat-
tice. Assume that the lattice is composed of elementary parallelograms with
the area 𝑆. Let 𝐵 denote the number of points of the lattice on the polygon
edges and 𝐼 the number of points of the lattice inside 𝑃. Then

𝐴 =
(
𝐼 + 1

2𝐵 − 1
)
𝑆. (10.1)

Many generalizations of the knight’s tour problem have been proposed
which involve alteration of the size and shape of the board or even modi-
fying the knight’s standard move; see Kraitchik [118]. Instead of using the
perpendicular components 2 and 1 of the knight’s move, written as the pair
(2,1), Kraitchik considers the (𝑚,𝑛)-move.

A Persian manuscript, a translation of which can be found in Duncan
Forbes’ History of Chess (London, 1880), explains the complete rules of
fourteenth-century Persian chess. A piece called the “camel”, used in Persian
chess and named the “cook” by Solomon Golomb, is actually a modified
knight that moves three instead of two squares along a row or a file, then
one square at right angles which may be written as (3,1). Obviously, this
piece can move on the 32 black squares of the standard 8 × 8 chessboard
without leaving the black squares. Golomb posed the following task.

Problem 10.6.* Is there a camel’s tour over all 32 black squares of the
chessboard in such a way that each square is traversed once and only once?
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Leonhard Euler (1707–1783) (→ p. 305)

Non-attacking rooks

Apart from the knight’s re-entrant tours on the chessboard, shown on
pages 258–264, another amusing chessboard problem caught Leonhard Eu-
ler’s interest.

Problem 10.7. Let 𝑄𝑛 (𝑛 ≥ 2) be the number of arrangements of 𝑛
rooks that can be placed on an 𝑛× 𝑛 chessboard so that no rook attacks any
other and no rook lies on the squares of the main diagonal. One assumes
that the main diagonal travels from the lower left corner square (1, 1) to the
upper right corner square (𝑛, 𝑛). The task is to find 𝑄𝑛 for an arbitrary 𝑛.

The required positions of rooks for 𝑛 = 2 and 𝑛 = 3, for example, are
shown in Figure 10.6 giving 𝑄2 = 1 and 𝑄3 = 2.

𝑛 = 2, 𝑄2 = 1 𝑛 = 3, 𝑄3 = 2

Figure 10.6. Non-attacking rooks outside the main diagonal

The above-mentioned problem is, in essence, the same one as that referred
to as the Bernoulli–Euler problem of misaddressed letters appearing on page
184. Naturally, the same formula provides solutions to both problems. As
our problem involves the placement of rooks on a chessboard, we will express
the solution of the problem of non-attacking rooks in the context of the
chessboard.

According to the task’s conditions, every row and every column contain
one and only one rook. For an arbitrary square (𝑖, 𝑗), belonging to the 𝑖th
row and 𝑗th column, we set the square (𝑗, 𝑖) symmetrical to the square (𝑖, 𝑗)
with respect to the main diagonal.

The rook can occupy 𝑛−1 squares in the first column (all except the
square belonging to the main diagonal). Assume that the rook in the first
column is placed on the square (𝑟, 1), 𝑟 ∈ {2, . . . , 𝑛}. Depending on the
arrangement of the rooks in the remaining 𝑛−1 columns, we can distinguish
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two groups of positions with non-attacking rooks: if the symmetrical square
(1, 𝑟) (related to the rook on the square (𝑟, 1)) is not occupied by a rook, we
will say that the considered position is of the first kind, otherwise, it is of
the second kind. For example, the position on the left in Figure 10.7 (where
𝑛 = 4 and 𝑟 = 2) is of the first kind, while the position on the right is of the
second kind.

Figure 10.7. Positions of the first kind (left) and second kind (right)

Let us now determine the number of the first kind positions. If we remove
the 𝑟th row from the board and substitute it by the first row, and then
remove the first column, a new (𝑛 − 1) × (𝑛 − 1) chessboard is obtained.
Each arrangement of rooks on the new chessboard satisfies the conditions of
the problem. The opposite claim is also valid: for each arrangement of rooks
on the new chessboard satisfying the conditions of the problem, the unique
position of the first kind can be found. Hence, the number of the first kind
positions is exactly 𝑄𝑛−1.

To determine the number of second kind positions, let us remove the
first column and the 𝑟th row, and also the 𝑟th column and the first row
from the 𝑛 × 𝑛 chessboard (regarding only positions of the second kind).
If we join the remaining rows and columns without altering their order, a
new (𝑛 − 2) × (𝑛 − 2) chessboard is formed. It is easy to check that the
arrangements of rooks on such (𝑛 − 2) × (𝑛 − 2) chessboards satisfy the
conditions of the posed problem. Therefore, it follows that there are 𝑄𝑛−2
positions of the second kind.

After consideration of the above, we conclude that there are 𝑄𝑛−1+𝑄𝑛−2
positions of non-attacking rooks on the 𝑛 × 𝑛 chessboard, satisfying the
problem’s conditions and corresponding to the fixed position of the rook—
the square (𝑟, 1)—in the first column. Since 𝑟 can take 𝑛 − 1 values (=
2, 3, . . . , 𝑛), one obtains

𝑄𝑛 = (𝑛− 1)(𝑄𝑛−1 +𝑄𝑛−2). (10.2)
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The above recurrence relation derived by Euler is a difference equation
of the second order. It can be reduced to a difference equation of the first
order in the following manner. Starting from (10.2) we find

𝑄𝑛 − 𝑛𝑄𝑛−1 = (𝑛− 1)(𝑄𝑛−1 +𝑄𝑛−2)− 𝑛𝑄𝑛−1
= −(𝑄𝑛−1 − (𝑛− 1)𝑄𝑛−2).

Using successively the last relation we obtain

𝑄𝑛 − 𝑛𝑄𝑛−1 = −(𝑄𝑛−1 − (𝑛− 1)𝑄𝑛−2)

= (−1)2(𝑄𝑛−2 − (𝑛− 2)𝑄𝑛−3)
...

= (−1)𝑛−3(𝑄3 − 3𝑄2).

Since 𝑄2 = 1 and 𝑄3 = 2 (see Figure 10.6), one obtains the difference
equation of the first order

𝑄𝑛 − 𝑛𝑄𝑛−1 = (−1)𝑛. (10.3)

To find the general formula for 𝑄𝑛, we apply (10.3) backwards and obtain

𝑄𝑛 = 𝑛𝑄𝑛−1 + (−1)𝑛 = 𝑛
(
(𝑛− 1)𝑄𝑛−2 + (−1)𝑛−1)+ (−1)𝑛

= 𝑛(𝑛− 1)𝑄𝑛−2 + 𝑛(−1)𝑛−1 + (−1)𝑛
= 𝑛(𝑛− 1)

(
(𝑛− 2)𝑄𝑛−3 + (−1)𝑛−2)+ 𝑛(−1)𝑛−1 + (−1)𝑛

= 𝑛(𝑛− 1)(𝑛− 2)𝑄𝑛−3 + 𝑛(𝑛− 1)(−1)𝑛−2
+ 𝑛(−1)𝑛−1 + (−1)𝑛
...

= 𝑛(𝑛− 1)(𝑛− 2) ⋅ ⋅ ⋅ 3 ⋅𝑄2 + 𝑛(𝑛− 1) ⋅ ⋅ ⋅ 4 ⋅ (−1)3 + ⋅ ⋅ ⋅
+ 𝑛(−1)𝑛−1 + (−1)𝑛

= 𝑛!
( 1

2!
− 1

3!
+ ⋅ ⋅ ⋅+ (−1)𝑛

𝑛!

)
,

that is,

𝑄𝑛 = 𝑛!
𝑛∑

𝑘=2

(−1)𝑘
𝑘!

(𝑛 ≥ 2).
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The last formula gives

𝑄2 = 1, 𝑄3 = 2, 𝑄4 = 9, 𝑄5 = 44, 𝑄6 = 265, etc.

Carl Friedrich Gauss (1777–1855) (→ p. 305)

Carl Friedrich Gauss indisputably merits a place among such illustrious
mathematicians as Archimedes and Newton. Sometimes known as “the
Prince of mathematicians,” Gauss is regarded as one of the most influen-
tial mathematicians in history. He made a remarkable contribution to many
fields of mathematics and science (see short biography on page 305).

As a ten-year old schoolboy, Gauss was already exhibiting his formidable
mathematical talents as the following story recounts. One day Gauss’ teacher
Mr. Büttner, who had a reputation for setting difficult problems, set his
pupils to the task of finding the sum of the arithmetic progression 1 + 2 +
⋅ ⋅ ⋅ + 100.7 The lazy teacher assumed that this problem would occupy the
class for the entire hour since the pupils knew nothing about arithmetical
progression and the general sum formula. Almost immediately, however, gif-

ted young Gauss placed his slate on the table.
When the astonished teacher finally looked at the
results, he saw the correct answer, 5,050, with
no further calculation. The ten-year-old boy had
mentally computed the sum by arranging the ad-
dends in 50 groups (1+100), (2+99), . . . , (50, 51),
each of them with the sum 101, and multiplying
this sum by 50 in his head to obtain the required
sum 101 ⋅50 =5,050. Impressed by his young stu-
dent, Büttner arranged for his assistant Martin
Bartels (1769–1836), who later became a mathe-
matics professor in Russia, to tutor Gauss.Carl Friedrich Gauss

1777–1855

Like Isaac Newton, Gauss was never a prolific writer. Being an ardent
perfectionist, he refused to publish his works which he did not consider com-
plete, presumably fearing criticism and controversy. His delayed publication
of results, like the delays of Newton, led to many high profile controversies
and disputes.

7Some authors claim that the teacher gave the arithmetic progression 81,297+81,495+
⋅ ⋅ ⋅+ 100,899 with the difference 198. It does not matter!
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Gauss’ short dairy of only 19 pages, found after his death and published
in 1901 by the renowned German mathematician Felix Klein, is regarded as
one of the most valuable mathematical documents ever. In it he included
146 of his discoveries, written in a very concise form, without any traces
of derivation or proofs. For example, he jotted down in his dairy “Heureka!
num = △+△+△,” a coded form of his discovery that every positive integer
is representable as a sum of at most three triangular numbers.

Many details about the work and life of Gauss can be found in G. W.
Dunnington’s book, Carl Friedrich Gauss, Titan of Science [58]. Here is a
short list of monuments, objects and other things named in honour of Gauss:

– The CGS unit for magnetic induction was named Gauss in his honour,
– Asteroid 1001 Gaussia,
– The Gauss crater on the Moon,
– The ship Gauss, used in the Gauss expedition to the Antarctic,
– Gaussberg, an extinct volcano on the Antarctic,
– The Gauss Tower, an observation tower in Dransfeld, Germany,
– Degaussing is the process of decreasing or eliminating an unwanted

magnetic field (say, from TV screens or computer monitors).

The eight queens problem

One of the most famous problems connected with a chessboard and chess
pieces is undoubtedly the eight queens problem. Although there are claims
that the problem was known earlier, in 1848 Max Bezzel put forward this
problem in the chess journal Deutsche Schachzeitung of Berlin:

Problem 10.8. How does one place eight queens on an 8× 8 chessboard,
or, for general purposes, 𝑛 queens on an 𝑛 × 𝑛 board, so that no queen is
attacked by another. In addition, determine the number of such positions.

Before we consider this problem, let us note that although puzzles involv-
ing non-attacking queens and similar chess-piece puzzles may be intriguing
in their right, more importantly, they have applications in industrial mathe-
matics; in maximum cliques from graph theory, and in integer programming
(see, e.g., [65]).

The eight queens problem was posed again by Franz Nauck in the more
widely read, Illustrirte Zeitung, of Leipzig in its issue of June 1, 1850. Four
weeks later Nauck presented 60 different solutions. In the September issue
he corrected himself and gave 92 solutions but he did not offer a proof that
there are not more. In 1910 G. Bennett8 concluded that there are only 12

8G. Bennett, The eight queens problem, Messenger of Mathematics, 39 (1910), 19.
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distinctly different solutions to the queens problem, that is, solutions that
could not be obtained one from another by rotations for 90∘, 180∘ and 270∘,
and mirror images; T. Gosset later proved this in 1914.9

Figure 10.8. The 8-queens problem; one fundamental solution 41582736

Each position of the non-attacking queens on the 8 × 8 board can be
indicated by an array of 8 numbers 𝑘1𝑘2 ⋅ ⋅ ⋅ 𝑘8. The solution 𝑘1𝑘2 ⋅ ⋅ ⋅ 𝑘8 means
that one queen is on the 𝑘1th square of the first column, one on the 𝑘2th
square of the second column, and so on. Therefore, twelve fundamental
solutions can be represented as follows:

41582736 41586372 42586137

42736815 42736851 42751863

42857136 42861357 46152837

46827135 47526138 48157263

Each of the twelve basic solutions can be rotated and reflected to yield 7
other patterns (except the solution 10, which gives only 3 other patterns
because of its symmetry). Therefore, counting reflections and rotations as
different, there are 92 solutions altogether. One fundamental solution given
by the first sequence 41582736 is shown in Figure 10.8.

Gauss himself also found great interest in the eight queens problem read-
ing Illustrirte Zeitung. In September of 1850 he concluded that there were

9T. Gosset, The eight queens problem, Messenger of Mathematics, 44 (1914), 48.
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76 solutions. Only a week later, Gauss wrote to his astronomer friend H. C.
Schumacher that four of his 76 solutions are false, leaving 72 as the num-
ber of true solutions. In addition, Gauss noted that there might be more,
remembering that Franz Nauck did not prove his assertion that there are
exactly 92 solutions. One can imagine that Gauss did not find all the solu-
tions on the first attempt, presumably because at that time, he lacked the
systematic and strongly supported methods necessary for solving problems
of this kind. More details about Gauss and the eight queens problem can be
found in [34] and [65].

Considering that the method of solving the eight queens problem via trail
and error was inelegant, Gauss turned this problem into an arithmetical
problem; see [34] and [86]. We have seen that each solution can be repre-
sented as a permutation of the numbers 1 through 8. Such a representation
automatically confirms that there is exactly one queen in each row and each
column. It was necessary to check in an easy way if any two queens occupy
the same diagonal and Gauss devised such a method. We will illustrate
his method with the permutation 41582736 that represents the eight-queens
solution shown in Figure 10.8.

Let us form the following sums:

4 1 5 8 2 7 3 6
1 2 3 4 5 6 7 8
− − − − − − − −

Σ 5 3 8 12 7 13 10 14

and
4 1 5 8 2 7 3 6
8 7 6 5 4 3 2 1
− − − − − − − −

Σ 12 8 11 13 6 10 5 7

In both cases the eight sums are distinct natural numbers, which means
that no two queens lie on the same negative diagonal ∖ (the sums above)
and no two queens lie on the same positive diagonal / (the sums below). Ac-
cording to these outcomes, Gauss concluded that the queens with positions
represented by the permutation 41582736 are non-attacking.

In 1874 J. W. Glaisher10 proposed expanding the eight queens problem to
the n-queens problem, that is, solving the queens’ puzzle for the general 𝑛×𝑛
chessboard. He attempted to solve it using determinants. It was suspected

10J. W. Glaisher, On the problem of eight queens, Philosophical Magazine, Sec. 4, 48
(1874), 457.
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that exactly 𝑛 non-attacking queens could be placed on an 𝑛×𝑛 chessboard,
but it was not until 1901 that Wilhelm Ahrens [2] could provide a positive
answer. Other interesting proofs can be found in [104], [181] and[193]. In
their paper [104] Hoffman, Loessi and Moore reduced the 𝑛-queens task
to the problem of finding a maximum internally stable set of a symmetric
graph, the vertices of which correspond to the 𝑛2 square elements of an 𝑛×𝑛
matrix.

Considering the more general problem of the 𝑛 × 𝑛 chessboard, first we
verify that there is no solution if 𝑛 < 4 (except the trivial case of one queen
on the 1× 1 square). Fundamental solutions for 4 ≤ 𝑛 ≤ 7 are as follows:

𝑛 = 4 : 3142,

𝑛 = 5 : 14253, 25314,

𝑛 = 6 : 246135,

𝑛 = 7 : 1357246, 3572461, 5724613, 4613572, 3162574, 2574136.

The number of fundamental solutions 𝐹 (𝑛) and the number of all solutions
𝑆(𝑛), including those obtained by rotations and reflections, are listed below
for 𝑛 = 1, . . . , 12. A general formula for the number of solutions 𝑆(𝑛) when
𝑛 is arbitrary has not been found yet.

𝑛 1 2 3 4 5 6 7 8 9 10 11 12

𝐹 (𝑛) 1 – – 1 2 1 6 12 46 92 341 1,784

𝑆(𝑛) 1 – – 2 10 4 40 92 342 724 2,680 14,200

Table 10.1. The number of solutions to the 𝑛× 𝑛 queens problem

Some interesting relations between magic squares and the 𝑛-queens prob-
lem have been considered by Demirörs, Rafraf and Tanik in [48]. The au-
thors have introduced a procedure for obtaining the arrangements of 𝑛 non-
attacking queens starting from magic squares of order 𝑛 not divisible by 2
and 3.

The following two problems are more complicated modern variants of the
eight queens problem and we leave them to the reader. In solving these
problems, it is advisable to use a computer program.

In his Mathematical Games column, M. Gardner [79] presented a version
of the 𝑛-queens problem with constraints. In this problem a queen may
attack other queen directly (as in ordinary chess game) or by reflection from
either the first or the (𝑛+1)-st horizontal virtual line. To put the reader at
ease, we shall offer the special case 𝑛 = 8.
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Problem 10.9.* Place 8 chess queens on the 8×8 board with a reflection
strip in such a way that no two queens attack each other either directly or
by reflection.

A superqueen (known also as “Amazon”) is a chess piece that moves like a
queen as well as a knight. This very powerful chess piece was known in some
variants of chess in the Middle Ages. Obviously, the 𝑛-superqueen problem
is an extension of the 𝑛-queen problem in which new restrictions should be
taken into account. So it is not strange that the 𝑛-superqueen problem has
no solution for 𝑛 < 10.

Problem 10.10.* Place 10 superqueens on the 10×10 chessboard so that
no superqueen can attack any other.

There is just one fundamental solution for the case 𝑛 = 10. Can you find
this solution?

A variation of the chess that would be worth mentioning is one in which
the game is played on a cylindrical board. The pieces in so-called cylindrical
chess are arranged as on an ordinary chessboard, and they move following
the same rules. But the board is in a cylindrical form because its vertical
edges are joined (“vertical cylindrical chess”) so that the verticals 𝑎 and ℎ
are juxtaposed. Also, it is possible to join the horizontal edges of the board
(“horizontal cylindrical chess”) so that the first and the eighth horizontal
are connected.

We have already seen that the eight queens problem on the standard 8×8
chessboard has 92 solutions. The following problem on a cylindrical chess-
board was considered by the outstanding chess journalist and chessmaster
Edvard Gik [84].

Problem 10.11.* Solve the problem of non-attacking queens on a cylin-
drical chessboard that is formed of an 8× 8 chessboard.

Donald Knuth (1938– ) (→ p. 310)

The longest uncrossed knight’s tour

On pages 258–262 we previously considered a knight’s tour over a chess-
board such that all 64 squares are traversed once and only once. The difficult
problem presented below imposes certain restrictions on the knight’s tour:

Problem 10.12. Find the largest uncrossed knight’s tour on a chessboard.
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Apparently T. R. Dawson once posed this problem, but L. D. Yardbrough
launched the same problem again in the July 1968 Journal of Recreational
Mathematics.

Figure 10.9. Knuth’s solution for the longest uncrossed knight’s tour

Donald E. Knuth wrote a “backtrack” computer program to find four fun-
damental solutions for the knight’s tour. To find these tours, the computer
examined 3,137,317,289 cases. One of these solutions is shown in Figure 10.9
(see, e.g., the book [138, p. 61]).

Guarini’s knight-switching problem

We end this chapter with Guarini’s classic knight-switching problem from
1512, mentioned in Chapter 1. A number of mathematicians have consid-
ered problems of this type, in modern times most frequently in connection
with planar graphs. No matter how unexpected it sounds, a kind of “graph
approach” was known to al-Adli (ca. 840 a.d.) who considered in his work
on chess a simple circuit that corresponds to the knight-move network on a
3× 3 board.

Problem 10.13. The task is to interchange two white knights on the
top corner squares of a 3 × 3 chessboard and two black knights on the bot-
tom corner squares. The white knights should move into the places occupied
initially by the black knights—and vice versa—in the minimum number of
moves. The knights may be moved in any order, regardless of their color.
Naturally, no two of them can occupy the same square.
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Solution. This puzzle belongs to the class of problems that can be solved
in an elegant manner using the theory of planar graphs. Possibly this prob-
lem could find its place in Chapter 9 on graphs, but we regard that it is an
unimportant dilemma.

The squares of the chessboard represent nodes of a graph, and the possi-
ble moves of the pieces between the corresponding squares (the nodes of the
graph) are interpreted as the connecting lines of the graph. The correspond-
ing graph for the board and the initial positions of the knights are shown in
Figure 10.10(a).
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a) b)

Figure 10.10. a) Graph to Guarini’s problem b) Equivalent simplified graph

The initial positions of the knights are indicated and all possible moves
of the knights between the squares (the nodes of the graph) are marked by
lines. Using Dudeney’s famous “method of unraveling a graph,”11 starting
from any node, the graph 10.10(a) can be “unfolded” to the equivalent graph
10.10(b), which is much clearer and more convenient for the analysis. Obvi-
ously, the topological structure and the connectedness are preserved. To find
the solution it is necessary to write down the moves (and reproduce them
on the 3× 3 board according to some correspondence), moving the knights
along the circumference of the graph until they exchange places. The min-
imum number of moves is 16 although the solution is not unique (because
the movement of the knights along the graph is not unique). Here is one
solution:

11This “method” was described in detail by E. Gik in the journal Nauka i Zhizn 12

(1976); see also M. Gardner, Mathematical Puzzles and Diversions (New York: Penguin,
1965).
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1–5 6–2 3–7 8–4 5–6 2–8 7–1 4–3
1–5 8–4 6–2 3–7 5–6 7–1 2–8 4–3.

A similar problem also involves two white and two black chess knights
and requires their interchange in the fewest possible moves.

Problem 10.14.* Two white and two black knights are placed on a board
of an unusual form, as shown in Figure 10.11. The goal is to exchange the
white and black knights in the minimum number of moves.

Figure 10.11. Knight-switching problem

Answers to Problems

10.2. Suppose that the required knight’s re-entrant route exists. We
assume that this board is colored alternately white and black (in a chess
order). The upper and lower row will be called the outer lines (𝑂), and the
two remaining rows the middle lines (𝑀). Since a knight, starting from any
outer square, can land only on a middle square, it follows that among 4𝑛
moves that should make the route, 2𝑛 moves must be played from the outer
to the middle squares. Therefore, there remain exactly 2𝑛 moves that have
to be realized from the middle to the outer squares.

Since any square of the closed knight’s tour can be the starting square,
without loss of generality, we can assume that we start from a “middle”
square. The described tour gives an alternate sequence

𝑀(start)−𝑂 −𝑀 −𝑂 − ⋅ ⋅ ⋅ −𝑀 −𝑂 −𝑀(finish), (10.4)

ending at the starting square. We emphasize that a knight can’t dare visit
two middle squares in a row anywhere along the tour because of the following.
Assume that we start with this double move𝑀−𝑀 (which is always possible
because these moves belong to the circuit), then we will have the sequence
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𝑀 −𝑀 − (2𝑛 − 1) × (𝑂 −𝑀). In this case we have 2𝑛 + 1 𝑀 moves and
2𝑛 − 1 𝑂 moves, thus each different from 2𝑛. Note further that the double
move 𝑂 − 𝑂 in the parenthesis in the last sequence is impossible because a
knight cannot jump from the outside line to the outside line.

On the other hand, the same knight’s tour alternates between white and
black squares, say,

𝑏𝑙𝑎𝑐𝑘 − 𝑤ℎ𝑖𝑡𝑒− 𝑏𝑙𝑎𝑐𝑘 − 𝑤ℎ𝑖𝑡𝑒− ⋅ ⋅ ⋅ − 𝑏𝑙𝑎𝑐𝑘 − 𝑤ℎ𝑖𝑡𝑒− 𝑏𝑙𝑎𝑐𝑘 (10.5)

(or opposite). Comparing the sequences (10.4) and (10.5) we note that all
squares of the outer lines are in one color and all squares of the middle lines
are in the other color. But this is a contradiction since the board is colored
alternately. Thus, the required path is impossible.

10.3. One solution is displayed in Figure 10.12. The three-dimensional
4×4×4 board is represented by the four horizontal 4×4 boards, which lie one
over the other; the lowest board is indicated by I, the highest by IV. The
knight’s moves are denoted by the numbers from 1 (starting square) to 64
(ending square). The knight can make a re-entrant tour because the squares
64 and 1 are connected by the knight’s moves.

57 30 47 36

48 33 58 31

29 60 35 46

34 45 32 59

42 37 56 51

55 52 43 40

38 41 50 53

49 54 39 44

27 62 15 2

14 26 63

61 28 3 16

4 13 64 25

10 7 22 17

21 18 9 6

8 11 20 23

19 24 5 12

I II III IV

Figure 10.12. Knight’s re-entrant path on the 4× 4× 4 board

10.5. Let 𝑆 be the area of a square of the 𝑛×𝑛 chessboard. Considering
formula (10.1) in Pick’s theorem, it is sufficient to prove that the number of
boundary points 𝐵 is even. Since the knight’s tour alternates between white
(𝑤) and black squares (𝑏), in the case of any closed tour (the starting square
coincides with the ending square) it is easy to observe that the number of
traversed squares must be even. Indeed, the sequence 𝑏 (start)−𝑤− 𝑏−𝑤−
⋅ ⋅ ⋅ − 𝑏 − 𝑤 − 𝑏 (finish), associated to the closed knight’s path, always has
an even number of moves (= traversed squares); see Figure 10.13. Since the
number of squares belonging to the required closed knight’s path is equal to
the number of boundary points 𝐵, the proof is completed.
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Figure 10.13. Area of a simply closed lattice polygon

10.6. As mentioned by M. Gardner in Scientific American 7 (1967),
S. Golomb solved the problem of a camel’s tour by using a transformation
of the chessboard suggested by his colleague Lloyd R. Welch and shown in
Figure 10.14: the chessboard is covered by a jagged-edged board consisting of
32 cells, each of them corresponding to a black square. It is easy to observe
that the camel’s moves over black squares of the chessboard are playable
on the jagged board and turn into knight’s moves on the jagged board.
Therefore, a camel’s tour on the chessboard is equivalent to a knight’s tour
on the jagged board. One simple solution is

1–14–2–5–10–23–17–29–26–32–20–8–19–22–9–21–18–
30–27–15–3–6–11–24–12–7–4–16–28– 31–25–13.

32313029

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

Figure 10.14. Solution of camel’s tour by transformation
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10.9. If you have not succeeded in solving the given problem, see the
following solutions found by Y. Kusaka [120]. Using a computer program
and backtracking algorithm he established that there are only 10 solutions
in this eight queens problem with constraints (we recall that this number is
92 for the ordinary case; see Table 10.1 for 𝑛 = 8):

25741863 27581463 36418572 36814752 36824175

37286415 42736815 51468273 51863724 57142863

10.10. The author of this book provided in his book Mathematics and
Chess [138] a computer program in the computer language C that can find
all possible solutions: the fundamental one and similar ones obtained by the
rotations of the board and by the reflections in the mirror. The program
runs for arbitrary 𝑛 and solves the standard 𝑛-queens problem as well as the
𝑛-superqueens problem. We emphasize that the running time increases very
quickly if 𝑛 increases.

The fundamental solution is shown in Figure 10.15, which can be denoted
as the permutation (3,6,9,1,4,7,10,2,5,8). As before, such denotation means
that one superqueen is on the third square of the first column, one on the
sixth square of the second column, and so on.

Figure 10.15. The fundamental solution of the superqueens problem for 𝑛 = 10

The three remaining solutions (found by the computer) arise from the
fundamental solution, and they can be expressed as follows:

(7,3,10,6,2,9,5,1,8,4) (4,8,1,5,9,2,6,10,3,7) (8,5,2,10,7,4,1,9,6,3)



280 10. Chess

10.11. There is no solution of the eight queens problem on the cylindrical
chessboard of the order 8. We follow the ingenious proof given by E. Gik
[84].

Let us consider an ordinary chessboard, imagining that its vertical edges
are joined (“vertical cylindrical chess”). Let us write in each of the squares
three digits (𝑖, 𝑗, 𝑘), where 𝑖, 𝑗, 𝑘 ∈ {1, . . . , 8} present column, row, and di-
agonal (respectively) of the traversing square (Figure 10.16). Assume that
there is a replacement of 8 non-attacking queens and let (𝑖1, 𝑗1, 𝑘1), . . . ,
(𝑖8, 𝑗8, 𝑘8) be the ordered triples that represent 8 occupied squares. Then
the numbers 𝑖1, . . . , 𝑖8 are distinct and belong to the set {1, . . . , 8}; there-
fore,

∑
𝑖𝑚 = 1+ ⋅ ⋅ ⋅+8 = 36. The same holds for the numbers from the sets

{𝑗1, . . . , 𝑗8} and {𝑘1, . . . , 𝑘8}.

Figure 10.16. Gik’s solution

We see that the sum (𝑖1 + ⋅ ⋅ ⋅ + 𝑖8) + (𝑗1 + ⋅ ⋅ ⋅ + 𝑗8) + (𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑛)
of all 24 digits written in the squares occupied by the queens is equal to
(1 + ⋅ ⋅ ⋅ + 8) × 3 = 108. Since the sum 𝑖𝜈 + 𝑗𝜈 + 𝑘𝜈 of the digits on each of
the squares is divided by 8 (see Figure 10.16), it follows that the sum of the
mentioned 24 digits must be divisible by 8. But 108 is not divisible by 8—a
contradiction, and the proof is completed, we are home free.

10.14. Although the chessboard has an unusual form, the knight-
switching problem is effectively solved using graphs, as in the case of Guar-
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ini’s problem 10.13. The corresponding graph for the board and the knight’s
moves is shown in Figure 10.17(a), and may be reduced to the equivalent
(but much simpler) graph 10.17(b).
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a) b)

Figure 10.17. A graph of possible moves and a simplified graph

The symmetry of the simplified graph and the alternative paths of the
knights along the graph permit a number of different solutions, but the
minimum number of 14 moves cannot be decreased. Here is one solution:

13–7–2 11–4–9–8 1–7–13–11 3–1–7–13 8–3 2–7–1
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