Abstract

We consider the semilinear focusing wave equation
\[\partial_{tt} u - \Delta u - u|u|^{p-1} = 0 \]
in large dimensions \(d \geq 11 \) and in the radial case. For a range of energy supercritical nonlinearities \(p > p(d) > 1 + \frac{2}{d+2} \), for each integer large enough \(\ell > \alpha(d,p) > 2 \), we construct a Lipschitz manifold of codimension \(\ell - 1 \) of solutions blowing up in finite time \(T \) by concentrating the soliton (stationnary state) profile:
\[u(t,r) \sim \frac{1}{\lambda(t)^{\frac{2}{p-1}}} Q \left(\frac{r}{\lambda(t)} \right) \]
at the quantized blow up rate:
\[\lambda(t) \sim c_u (T - t)^{\frac{\ell}{\alpha}}. \]
The solutions can be chosen \(C^\infty \) and compactly supported. In that case the blow up is of type II i.e all norms below scaling remain bounded
\[\limsup_{t \uparrow T} \| \nabla^s u(t), \nabla^{s-1} \partial_t u(t) \|_{L^2} < +\infty \quad \text{for} \quad 1 \leq s < s_c = \frac{d}{2} - \frac{2}{p-1}. \]
Our analysis adapts the robust energy method developed for the study of energy critical bubbles by Merle-Raphaël-Rodnianski, Raphaël-Rodnianski and Raphaël-Schwayer, the study of this issue for the supercritical semilinear heat equation done by Herrero-Velázquez, Matano-Merle and Mizoguchi, and the analogous result for the energy supercritical Schrödinger equation by Merle-Raphaël-Rodnianski.

Received by the editor Month Day, Year.
Article electronically published on Month Day, Year.
DOI: http://dx.doi.org/1090/???
2010 Mathematics Subject Classification. primary 35B44, secondary 35L05 58B99.
Key words and phrases. blow up concentration manifold soliton wave equation.
ERC Blowdisol, Ministère de l’Éducation Nationale, de l’Enseignement Supérieur et de la Recherche.