
Part 1

Overview



The first five lectures give an overview of the course: We formulate the main
result, the Geometrization Conjecture; we show how it implies the Poincaré Con-
jecture; we then introduce the Ricci flow and Ricci flow with surgery and give an
indication of how these are used to prove the Geometrization Conjecture.



Lecture 1

In this course, we focus on compact and orientable 3-manifolds. We ask the
following fundamental questions:

What do all 3-manifolds look like? Can we classify them?

Consider the case of closed orientable surfaces. They are characterized by the
genus. The case g = 0 is the 2-sphere. One can equip it with the round metric. The

Figure 1. Surfaces with genus 0, 1 and 2

case g = 1 corresponds to the two dimensional torus ∼= R2/Γ, where Γ is a lattice
subgroup of R2. It admits a naturally induced flat metric from R2. For g ≥ 2 we
can equip the surface Σg of genus g with the hyperbolic metric induced from the
Poincaré disk model of H2; that is to say there is a discrete, torsion-free subgroup
Γg of the isometries of H2 with Σg

∼= H2/Γg.

Geometric manifolds

Definition (Homogeneous metric). Let (M, g) be a Riemannian manifold.
The metric g is called homogeneous if the action Isom(M)×M → M is transitive.

Definition (Locally homogeneous metric). A Riemannian metric g on a man-
ifold M is called locally homogeneous if its lifted metric g̃ on the universal cover
M̃ is homogeneous.

The round metric of the 2-sphere (i.e. g = 0) is homogeneous, but the hyper-
bolic metric of the genus-2 Riemann surface is not. However, the latter is locally
homogeneous.

Definition (Geometric manifolds). A manifold is called geometric if it ad-
mits a finite volume complete locally homogeneous Riemannian metric.

Here is the list of Geometric 3-manifolds by type (see [19]):

(1) Round: S3 and its finite quotients – lens spaces, dodecahedron spaces –
classification was completed by Hopf.

(2) Flat: T 3 and its finite quotients – these are completely classified.
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4 LECTURE 1

(3) Hyperbolic: H3/Γ, where H3 is hyperbolic 3-space and Γ is a torsion-free

lattice group acting cocompactly on H3 - these are not classified.
(4) Round×R: S2 × S1 and RP3�RP3.
(5) Hyperbolic×R: Σg × S1 and manifolds finitely covered by these – these

are completely classified.
(6) Nil(3): Quotients of the Heisenberg group with a left-invariant metric by

cocompact subgroups – these are completely classified and each is finitely
covered by a non-trivial circle bundle over the two-torus. The Heisenberg
group is: ⎧⎨⎩

⎡⎣1 x y
0 1 z
0 0 1

⎤⎦ : x, y, z ∈ R

⎫⎬⎭ .

(7) Solv(3): The Solv(3) group is = R2 � R+ with a left-invariant metric

where t ∈ R+ acts by diag(t, t−1) on R2: its finite volume quotients are
finitely covered by T 2-bundle over S1 with Anasov monodromy.

(8) ˜PSL2(R): Finite volume quotients are finitely covered by circle bundles
over hyperbolic surfaces – these are completely classified in terms of 2-
dimensional orbifolds.

Remark: It is known that there is no noncompact examples of geometric 3-
manifolds in the Round, Flat, Nil(3), Solv(3) and Round×R cases.

Also, any noncompact geometric 3-manifold is the interior of a compact 3-
manifoldM with boundary ∂, where ∂ =

∐
T 2 where the tori T 2 are incompressible,

i.e. ι∗ : π1(T
2) ↪→ π1(M) is injective.

Thurston manifolds

Definition (Thurston manifolds). A Thurston manifold is one constructed
as follows:
Let Γ be a finite connected graph. Each vertex v ∈ Vert(Γ) is in correspondence with
a compact manifold M3

v , where ∂M3
v is a disjoint union of incompressible tori and

int M3
v is either geometric or a twisted I-bundle over the Klein bottle. To each vertex

v, the edge set E(v) is in bijection with boundary components of M3
v ; the boundary

component associated with e ∈ E(v) is denoted ∂eMv. Each edge e connecting
vertices v1 and v2 is associated to an orientation-reversing diffeomorphism αe of
∂eM

3
v1 and ∂eM

3
v2 .

e

v1 v2

αe

Mv1

∂Mv1

Mv2

∂Mv2

Figure 2. an example of a Thurston manifold

Note: This decomposition is unique if we do not allow αe to match S1-fibers
up to isotropy.
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Lemma. M3 is Thurston if and only if there exists J ⊂ M3 where J =∐
i T

2
i

∐
j K

2
j , each T 2

i and K2
j is incompressible and such that each component of

M3 − J is geometric (K2 is the Klein bottle).

Definition (Prime manifold). A 3-manifold P 3 is called prime if it is not S3

and every separating S2 ⊂ P 3 (i.e P 3 − S2 is not connected) bounds a 3-ball. In
other words, if P 3 = M1�M2, then exactly one of M1 or M2 is diffeomorphic to S3.

Notice S2 × S1 is prime.
It is interesting to note that the only Thurston manifold which is not prime is

RP3�RP3.

Theorem (Prime decomposition). Every 3-manifold M3 is a connected sum
of prime 3-manifolds. The decomposition is unique up to the order of factors.

For a proof see [12].

The theorems

Here is the main theorem of our course:

Conjecture (Thurston’s Geometrization Conjecture). Every closed, orientable
3-manifold is a connected sum of Thurston manifolds, or equivalently every prime
closed 3-manifold admits a disjoint union J of incompressible tori and Klein bottles
so that every connected component of the complement is geometric.

One can easily see the Geometrization Conjecture implies the Poincaré Con-
jecture:

Conjecture (Poincaré Conjecture). Every closed, orientable and simply con-
nected 3-manifold is homeomorphic to S3.

Proof of Geometrization Conjecture ⇒ Poincaré Conjecture:

Suppose M3 is a closed orientable 3-manifold with π1(M
3) = 1. Prime decomposi-

tion asserts that if M3 is not homeomorphic to S3, then M3 = P1� · · · �PN where Pi

are all prime. It follows that 1 = π1(M
3) = π1(P1) ∗ · · · ∗π1(PN ), hence π1(Pi) = 1

for every i. By the Geometrization Conjecture, each Pi is a connected sum of
Thurston manifolds. As Pi is prime, Pi is itself Thurston. Thus, Pi contains J a
disjoint union of incompressible tori and Klein bottles such that Pi −J is geomet-
ric. Since Pi is simply-connected, such incompressible tori or Klein bottles cannot
exist. Therefore Pi is geometric. By the classification of geometric 3-manifolds, the
only compact simply-connected geometric 3-manifold is S3, so Pi

∼= S3 for every i.
This proves the Poincaré Conjecture. �

One way to recognize a round metric is to look at the sectional curvature:

Lemma. If M3 admits a metric of constant sectional curvature +1, then the
universal covering of M3 is isometric to S3 and in particular M3 is geometric.

Proof. Here we give the sketch of proof. For more details see [24]. By a result
of Riemann, such M3 is locally isometric to S3. We write M3 =

⋃
i Ui where each

Ui is connected and isometric to an open subset of S3. Lift the local isometries

to the universal cover M̃3. We claim the local isometries can be made to glue

to a global isometry. Consider two overlapping open sets Ũ1, Ũ2 ⊂ M̃3 which are

locally isometric to S3, i.e. there exist isometries φi : Ũi → Vi, (i = 1, 2), where
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Vi, (i = 1, 2), are open subsets of S3. The isometries φi’s may not agree on the

overlap Ũ1 ∩ Ũ2. However, by the homogeneousness of the round 3-sphere, one can

find an isometry Φ: S3 → S3 such that φ1 and Φ ◦ φ2 agree on Ũ1 ∩ Ũ2 (See the
figure below). We replace φ2 by Φ ◦ φ2. By composing a suitable isometry of S3

to each local isometries between M̃3 and S3, the local isometries can be made to

agree on their overlap, so they glue to a global map from M̃3 and S3 which is a

local isometry and hence is an immersion. This means the map from M̃ to S3 is a

covering projection. Since M̃ is connected and S3 is simply-connected, this covering
projection is a diffeomorphism, but a local isometry that is also a diffeomorphism

is a global isometry. This proves that M̃ with the induced metric is isometric to
S3. Therefore, M3 is a spherical space-form. �
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Ũ2

Ũ1

φ1

Figure 3. gluing local isometries to a global isometry

The idea behind using Ricci flow to prove the Geometrization Conjecture is
that, starting with any Riemannian metric, the Ricci flow should smooth out the
curvature and hence in the limit the curvature will become evenly distributed and
the resulting metric is then homogeneous.



Lecture 2

Lectures 2 – 5 give an outline of the proof of the Geometrization Conjecture
using the Ricci flow which was first introduced by Hamilton, see [5].

Our approach to these results is through studying evolving one-parameter fam-
ilies of Riemannian metrics on a given 3-manifold.

Basics of Riemannian geometry

We first review some basic Riemannian geometry and define the notations of
curvatures for the course.

Let (M, g) be a Riemannian manifold, there exists a unique torsion-free and
metric connection ∇ (call the Levi-civita connection). Let (x1, · · · , xn) be local
coordinates and {∂1, · · · , ∂n} be the local basis of TM given by ∂i = ∂

∂xi . The

connection ∇ is determined by the Christoffel’s symbols Γk
ij defined by:

∇∂i
∂j = Γk

ij∂k.

Note that the torsion-free condition is equivalent to saying Γk
ij = Γk

ji for any i, j, k.

Using the metric compatibility of ∇, one can derive a local expression of Γk
ij in

terms of gij and its first derivatives. To carry this out, one can consider

∂i〈∂j , ∂k〉g = 〈∇∂i
∂j , ∂k〉g + 〈∂j ,∇∂i

∂k〉g,

and so we have (with, as always, the Einstein summation convention)

∂igjk = Γl
ijglk + Γl

ikgjl.

By cyclic permuting indices i, j, k one can easily derive the following local expres-
sion:

Γk
ij =

1

2
gkl(∂igjl + ∂jgil − ∂lgij).

Next we define the Riemann curvature:
Denote Rmij

.
= ∇∂i

◦ ∇∂j
−∇∂j

◦ ∇∂i
. Then the Riemann curvature tensor is

defined as

Rijkl = 〈Rmij(∂l), ∂k〉g .
One can show that Rijkl is skew-symmetric in (ij) and (kl), i.e. Rijkl = −Rjikl =
−Rijlk, and satisfies Rijkl = Rklij . Therefore, the Riemann curvature tensor can
be viewed as a symmetric bilinear form on ∧2TM .

In dimension 3, every orthonormal basis for ∧2TM is of the form {e2 ∧ e3,
e3 ∧ e1, e1 ∧ e2} where {e1, e2, e3} is an orthonormal basis of TM .

Regard the Riemann curvature tensor as a symmetric bilinear form on ∧2TM .
For any x ∈ M , one can find orthonormal basis {e1, e2, e3} for TxM such that Rmx

7
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is diagonalized with respect to basis {e2 ∧ e3, e3 ∧ e1, e1 ∧ e2}:

Rmx =

⎡⎣λ 0 0
0 µ 0
0 0 ν

⎤⎦where λ ≤ µ ≤ ν.

Now we define the Ricci curvature tensor as Rik = gjlRjilk. Under the above
orthonormal basis {e1, e2, e3} on TxM , the Ricci tensor is also diagonalized:

Ricx =

⎡⎣µ+ ν 0 0
0 λ+ ν 0
0 0 λ+ µ

⎤⎦
Thus in dimension 3, Rm and Ric can be simultaneously diagonalized and Ric

determines Rm. That makes Ricci flow particularly useful in three dimension.

Basics of Ricci flow

Now we turn to the partial differential equation that generates the one-parameter
families of metrics we study.

As defined by Hamilton in [5], the Ricci flow equation is:

∂g(t)

∂t
= −2Ric(g(t)).

A smooth one-parameter family of metrics g(t) satisfying the Ricci flow equation
is called a Ricci flow. We will mostly deal with initial value problems of Ricci flow,
that is we require g(0) = g0 where g0 is a given Riemannian metric on M .

Hamilton proved the following existence and uniqueness theorem on Ricci flow:

Theorem (Hamilton ([5]). If Mn is compact and g0 is C∞, then there exists
Tmax ∈ (0,+∞] depending on g0 and a Ricci flow solution g(t), defined for t ∈
[0, Tmax), such that g(0) = g0. Moreover, any solution g̃(t) defined on t ∈ [0, T )
with g̃(0) = g0 must have T ≤ Tmax and g̃(t) = g(t) for any t ∈ [0, T ).

Remark on existence and uniqueness:
The Ricci flow equation is NOT strictly parabolic because of diffeomorphism

invariance of the Ricci tensor, so the short-time existence and uniqueness do not
follow from standard parabolic theory. DeTurck in [4] simplified Hamilton’s original
proof of short-time existence and uniqueness by modifying the flow by modding out
its diffeomorphism invariance. The modified flow is strictly parabolic so its short-
time existence follows from standard theory. Then the solution of the Ricci flow
is recovered by pulling-back the solution of the modified flow. This trick is now
well-known as DeTurck’s trick.

Here are some examples of Ricci flow solutions:

(1) (Mn, g0) is Einstein, i.e. Ric(g0) = λ0g0, where λ0 ∈ R.
Let

g(t) = λ(t)g0.

Assuming it satisfies the Ricci flow equation, we will have

−2Ric(g(t)) =
∂g(t)

∂t
= λ′(t)g0.

As the Ricci tensor is scale-invariant, i.e. Ric(λ(t)g0) = Ric(g0) so we
have

−2λ0g0 = −2Ric(g0) = λ′(t)g0.
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Solving for λ(t), we get

g(t) = (1− 2λ0t)g0.

Note that the solution becomes singular at t = 1/2λ0.
Therefore, under the Ricci flow, the sphere (Sn, ground) equipped

with the round metric such that Ric = ground will shrink homothetically
along the flow and become singular at t = 1/2. In contrast, the surface of
genus g ≥ 2 equipped with hyperbolic metric with Ric = −g will inflate
forever, and the Ricci flow solution exists for all t > 0. Obviously, the flat
metric will be stationary along the flow.

(2) Let us consider (S2, h0)) × R with product metric g0 = h0 × ds2, where
h0 is the round metric of S2 such that Ric(h0) = λ0h0. As the Ricci
tensor preserves the product structure, so does the Ricci flow solution.
Therefore, the Ricci flow solution with this initial metric g0 is given by

g(t) = (1− 2λ0t)h0 × ds2.

In a nutshell, the flow will deform the S2-cylinder by shrinking the radius
of the S2 and after some finite time, the manifold converges to an infinite
line.

The above are examples of Ricci flow solutions that can be written down ex-
plicitly. In a more general setting, Hamilton proved in 1982 the following result on
closed 3-manifolds with positive Ricci curvature:

Theorem (Hamilton ([5]). Suppose (M3, g0) is a closed 3-manifold with posi-
tive Ricci curvature, then Tmax < ∞ and the following holds:

(1) lim
t→Tmax

diam(M, g(t)) = 0

(2) lim
t→Tmax

maximum sectional curvature of g(t)

minimum sectional curvature of g(t)
= 1

(3) The rescaled metric Rmmin(t)g(t) converges smoothly to a limiting round
metric.

The above theorem therefore asserts that any 3-manifold with positive Ricci
curvature behaves asymptotically along the Ricci flow like a round manifold. In
particular, every such 3-manifold admits a round metric, hence topologically it is
S3/Γ where Γ is an isometry group acting freely on S3.

Hamilton also classified the case for nonnegative Ricci curvature:

Theorem (Hamilton, [6]). Again (M3, g0) is a closed 3-manifold, but now we
suppose Ric(g0) ≥ 0, the one of the following holds:

(1) Ric(g(t)) > 0 for any t > 0, then the previous theorem applies and so M3

is a spherical space-form.
(2) Ric(g0) ≡ 0, or equivalently M3 is flat.
(3) Ric(g(t)) never becomes strictly positive nor identically zero, then locally

(M3, g0) splits into (Σ2, h) × R where (Σ2, h) is a surface with positive
curvature.

The main ingredient of the proof of the above theorems is the maximum prin-
ciple argument. To illustrate how to apply maximum principles to get estimates,
let us consider the evolution equations of various curvature quantities:
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We define the scalar curvature R
.
= tr(Ric). In dimension 3, R = 2(λ+ µ+ ν)

where λ, µ, ν are eigenvalues of Rm. Hamilton derived the evolution equation of
Rm is of the form

∂

∂t
Rm = ∆Rm+Q(Rm),

where Q(Rm) is a quadratic expression of components of Rm.
The evolution equation of the scalar curvature R in dimension n is given by

∂

∂t
R = ∆R+ 2|Ric0|2 + 2

n
R2,

where Ric0 is the traceless part of Ric, i.e. Ric− R
n g.

Denote Rmin(t) to be the minimum scalar curvature at time t, from above we
have

d

dt
Rmin ≥ 2

n
Rmin(t)

2.

Here we have used the fact that the Laplacian is nonnegative at a minimum point.
Applying the scalar maximum principle, we get two consequences:

(1) Rmin(t) is a nondecreasing function of t.
(2) If Rmin(0) > 0, Rmin(t) blows-up in finite time.

We have just demonstrated the use of scalar maximum principle. In order to
derive estimates on tensors like Rm and Ric, Hamilton used some more sophisticated
maximum principle machinery, namely maximum principle on tensors which we will
state explicitly later.

There are two invariances of the Ricci flow: rescaling and time shifting of a
Ricci flow solution g(t)

(1) (Rescaling) If g(t) is a Ricci flow solution, so is h(t′) = λg(λ−1t′) for any
constant λ > 0.

(2) (Time shifting) If g(t) is a Ricci flow solution, then so is g(t− t0) for any
fixed t0.

We shall often work with Ricci flows with normalized initial conditions, mean-
ing:

(1) Rm(x, 0) has eigenvalues between 1 and −1.
(2) Vol(B(x, 1)) ≥ 1

2VolBR3(1) for every x ∈ M .

Provided the manifold is compact, by rescaling of the metric, one can normalize
its initial conditions.

While the Ricci flow produces important one-parameter families of metrics,
these are not sufficient for the topological applications. We shall need more general
families, called Ricci flows with surgery.

The key to constructing these and understanding them is the notion of:

Canonical Neighborhoods

Our next goal is to describe, at a somewhat qualitative level, Ricci flow with
surgery. In order to do this, we must first introduce canonical neighborhoods. It
turns out these neighborhoods, introduced in [15], have many special topological
and geometric properties that we make use of in both defining Ricci flow with
surgery and proving the existence of these for all positive time. We shall not give
all the structure of these neighborhoods at once, but rather introduce more and
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more structure as it is needed. Thus, as we proceed in the argument we will refine
what we mean by a canonical neighborhood. Here is the first definition:

First we fix an ε > 0, there are essentially 3 types of ε-canonical neighborhoods:

(1) (ε-neck) - a neighborhood Nε ⊂ M3 diffeomorphic to S2 × (−ε−1, ε−1)
under diffeomorphism ϕ : S2 × (−ε−1, ε−1) → Nε, such that the rescaled

pull-back metric R(x, t)ϕ∗g(t) on S2 × (−ε−1, ε−1) is within ε in C [ε−1]-
topology to the product of the round metric on S2 with R = 1 with the
usual metric on (−ε−1, ε−1).

(2) (ε-cap) - topologically B3 or a punctured real projective 3-space RP3
0, and

whose end is a ε-neck.
(3) connected component of positive sectional curvature.

A point x ∈ M is said to have an ε-canonical neighborhood if it lies in the
central two-sphere of an ε-neck, lies in an ε-cap in the complement of the ε-neck
forming the end of the cap, or lies in a component of positive sectional curvature.

x

−ε−1 S2 × {0} ε−1

Figure 4. an ε-neck

rest of
the manifold

(x, t)

ε-neck

ε-cap

B3 or RP 3
o

Figure 5. an ε-cap connected to an ε-neck
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The following results by Perelman and Hamilton illustrate the importance of
all these canonical neighborhoods:

Theorem (Perelman, [15]). Fix ε > 0, then there exists a non-increasing
function r(t) > 0 with limt→∞ r(t) = 0, such that for any normalized Ricci flow
solution (M3, g(t)), t ∈ [0, T ), any point (x, t) with R(x, t) ≥ r−2(t) has an ε-
canonical neighborhood.

Theorem (Hamilton, [5]). If (M3, g(t)) is a Ricci flow solution with Tmax <
∞, then

lim sup
t→T−

max

Rmax(t) = ∞.

It follows from the results that all finite-time singularities are contained in
regions covered by ε-canonical neighborhoods.
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More on Canonical Neighborhoods

In the last lecture we defined three types of canonical neighborhoods, namely ε-
necks, ε-caps and connected components of positive curvature and we stated a result
to the effect that the regions in a 3-manifold where finite-time singularities develop
are covered by ε-canonical neighborhoods. Here is a theorem that characterizes
subsets covered by canonical neighborhoods:

Theorem. Fix ε > 0 sufficiently small. Suppose X ⊂ M3, X is connected and
every x ∈ X has a ε-canonical neighborhood. Then one of the following holds:

(1) X is contained in a connected component of positive curvature.
(2) X is contained in an ε-tube or a circular ε-tube. An ε-tube is a submanifold

diffeomorphic to S2 × (a, b), is a union of ε-necks and the S2-factors in
the ε-necks separate the ends of the tube. A circular ε-tube is an S2-
bundle over S1, is a union of ε-necks and the S2-factors in the ε-necks are
homotopic to the fibers of the fibration structure.

(3) X is contained in a capped or doubly-capped ε-tube, which is the union of
an ε-tube with an ε-cap attached to one or both ends.

In fact, this result extends to non-connected subsets X ⊂ M .

Corollary. Fix ε > 0. Suppose every x ∈ X has a ε-canonical neighborhood.
Then X is contained in a disjoint union of subsets as in 1, 2, and 3 in the previous
theorem.

This gives us topological control over regions containing the finite-time singu-
larities, but more delicate geometric and analytic properties of these neighborhoods
(which we have not yet introduced) are also crucial.

Here is one of the main results we shall need to define surgery over Ricci flow.

Theorem (Perelman, [15]). Assume M3 is compact and (M3, g(t)) is a Ricci
flow defined on 0 ≤ t < Tmax < ∞ and fix ε > 0 sufficiently small. We define a
subset Ω ⊂ M3 by

Ω = {x ∈ M3 : lim inf
t→T−

max

R(x, t) < ∞}.

Then,

(1) Ω is an open set, which may be empty.
(2) g(t)|Ω converges smoothly, uniformly on compact subsets, to a limiting

metric g(Tmax) on Ω, and the scalar curvature RTmax
: Ω → R of g(Tmax)

is a proper function and is bounded below.
(3) For any connected component Ω0 of Ω, every end of Ω0 is an ε-horn,

i.e. a neighborhood of the end is diffeomorphic to S2 × (a, b) and this
neighborhood is a union of ε-tubes.

13
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capped ε-tube

circular ε-tube

2-sphere
cross-sections

ε-tube

Figure 6. ε-tubes

(4) There is a compact subset K ⊂ Ω such that for every t sufficiently close
to Tmax, M −K is covered by a finite disjoint union of ε-canonical neigh-
borhoods in (M, g(t)).

Remark: We do not know in general if Ω has finitely many components or not.

Surgery on Ricci flow

All of this control on the regions of high curvature and the limiting object at
the singular time allows us to define a Ricci flow with surgery. We start with a
closed Riemannian 3-manifold (M3, g0) and run the Ricci flow g(t). Suppose for
this flow Tmax < ∞. Fix ρ ∈ (0, r(Tmax)) where r(t) is the canonical neighborhood
threshold function. Define Ω(ρ) ⊂ Ω as:

Ω(ρ)
.
= {x ∈ Ω : R(x, Tmax) ≤ ρ−2}.

We perform the following operations:

(1) Remove M \ Ω = R−1
Tmax

(∞) from M
(2) Remove all connected components of Ω that do not meet Ω(ρ).
(3) In each ε-horn end of each component of Ω0 of Ω meeting Ω(ρ) we fix

a central 2-sphere of an ε-neck in the ε-horn and remove the part of the
ε-horn outside that 2-sphere.

Removing this open set of M leaves a compact 3-manifold M0 with ∂M0 being
a disjoint union of 2-spheres. M0 has the limiting metric g(Tmax). We cap off the
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manifold by gluing the interior of a 3-ball to the ends of the remaining manifold
using the partition of unity.

Ω(ρ) + =

B3

Ω

Figure 7. gluing a cap

(The metric on the B3 is invariant under SO(3) and is isometric to S2 times
an interval near the boundary.)

Ricci flowRicci flow

Ricci flow

Ricci flow

surgery
caps

cut-away

regions

singularity

Figure 8. Ricci flow with surgery
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Then we get a new compact manifold, call it M1, with a new metric g1(Tmax).
Restart the Ricci flow on this manifold until singularity occurs again and repeat the
process. In doing so, we have constructed a sequence of manifolds (Mi, gi(t)), t ∈
[ti, ti+1) where 0 = t0 < t1 < t2 < · · · , where Mi+1 is obtained by the aforesaid
removal of parts from Mi and gluing of 3-balls. We call these ti’s the surgery times.

Here is a theorem about the nature of surgery times under Ricci flow with
surgery:

Theorem. The surgery times 0 = t0 < t1 < t2 < · · · satisfies either one of the
following conditions

(1) tk = ∞ for some k; or
(2) {ti} form a discrete subset of [0,∞).

The main ingredient of the proof of the above theorem is a volume estimate.
Under the Ricci flow, the volume evolves according to the following equation:

d

dt
Vol(M, g(t)) = −

∫
M

R(x, t)dVg(t),

and so d
dtVol(t) ≤ −Rmin(t)Vol(t).

Since the evolution equation of R in dimension 3 is ∂R
∂t = ∆R+2|Ric0|2+ 2

3R
2,

a maximum principle argument shows that Rmin(t) is a nondecreasing function.
After normalizing the initial metric one can assume 1 ≥ Rm(x, 0) ≥ −1 for any
x ∈ M . Hence, Rmin(t) ≥ −6 for any t ∈ [0, Tmax). The inequality is preserved
under each surgery because only pieces with nonnegative scalar curvature are added
to the manifold. Therefore, the volume satisfies

Vol(t) ≤ Vol(0)e6t.

In each 2-sphere surgery we remove half of an ε-tube (and more) and glue in a
3-disk. Direct examination shows that for ε > 0 sufficiently small we remove at

least R(x, Tmax)
−3/2 × ε−1

2 where (x, Tmax) is a point in the S2 that we cut along.
Since ε > 0 is fixed, as long as we have an upper bound on every finite time interval
to the scalar curvature or equivalently a positive lower bound to the diameter of
these 2-spheres we cut along, it follows that we can only do finitely many surgeries
in each finite time interval. It turns out we can do surgeries with these bounds
though we must allow them to decay as time goes to infinity.

Topological effects of surgery

Here is the crucial result for using Ricci flow with surgery to obtain topological
results.

Theorem. Suppose M1 is obtained from M0 by a surgery on a Ricci flow.
Then topologically M1 is obtained from M0 by:

(1) connected-sum decompositions, and
(2) removal of connected components with semi-positive locally homogeneous

metric

Corollary. If M1 satisfies the Geometrization Conjecture, then so in M0.

We shall prove this theorem in the next lecture.



Lecture 4

More structure (geometric and analytic) of Canonical Neighborhoods

Recall there are three types of canonical neighborhoods, namely ε-tubes, ε-caps
and connected components of positive curvature. While we have already stated
some of the properties of ε-neighborhoods, there are more. By definition, the scalar
curvature and the diameter of the canonical neighborhoods satisfy the following
estimates.

There exists C = C(ε) > 0 such that:

(1) diameter of the ε-canonical neighborhood ≤ CR(y, t)−1/2 for any y in the
neighborhood.

(2) R(y,t)
R(x,t) ≤ C for any x, y in the canonical neighborhood.

(3) |∂R∂t (x, t)| ≤ CR2(x, t) at every (x, t) in the canonical neighborhood.

(4) |∇R(x, t)| ≤ CR3/2(x, t) at every (x, t) in the canonical neighborhood.

These estimates can be easily verified for the ε-necks. The other cases follow
from compactness results. Using the last two estimates, one can show the fact we
claimed last time that Ω = {x ∈ M : lim inft→Tmax

R(x, t) < ∞} is an open subset
of M .

Proof of openness of Ω:
Pick up x ∈ Ω, there exists K < ∞ and tn → Tmax such that R(x, tn) < K for

every n.
Take n sufficiently large such that Tmax−δ < tn < Tmax where δ is to be chosen

later. Using |∇R(x, t)| ≤ CR3/2(x, t), one can find r = r(K) > 0 such that R ≤ 2K
on B(x, tn, r).

Using |∂R∂t | ≤ CR2 one can choose δ small enough (depending on K) such that
R(y, t) ≤ 4K for any y ∈ B(x, tn, r) and tn < t < Tmax). Therefore, B(x, tn, r) ⊂ Ω
and so Ω is open. �

Now let us prove the theorem stated at the end of the previous lecture. Fix
0 < ρ < r/2. Recall that at Tmax we remove:

(1) X = M − Ω, i.e. points x ∈ M where R(x, t) → ∞ as t → Tmax;
(2) components of Ω disjoint from Ω(ρ);
(3) ends of ε-horns in the remaining components of Ω.

Let us denote C be the set of points we removed from M . For any point on C,
we have RTmax

> ρ−2. Using the third estimate for R, we can prove for t′ < Tmax

but sufficiently close to Tmax we have R|C×t′ ≥ 1
4ρ

−2. Thus by the theorem on
canonical neighborhoods stated at the end of Lecture 2, every (y, t′) ∈ C × {t′}
has a canonical neighborhood, and so there exists disjoint union of ε-tubes, capped
ε-tubes and components of positive curvature in (M, g(t′)) containing C × {t′}. To
finish the proof, we need a little more about the surgery 2-spheres:

17
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In fact the surgery 2-spheres are the centers of δ-necks where δ � min(ε, C−1(ε)).
By the diameter estimate of ε-caps, the size of δ-neck is bigger than the diameter
of an ε-cap, so the surgery 2-spheres all lie far from the caps. Therefore, all the
surgery spheres lie in ε-tubes and are parallel in that ε-tube to the S2-factor.

ε-cap
ε-cap

surgery S2

ε-tube

Figure 9. position of surgery 2-sphere

RP 3

or S3

RP 3

or S3 RP 3

or S3
RP 3

or S3

δ-neck

δ-neck

Figure 10. resulting manifolds after surgery

We cap off the boundary by 3-balls. Thus, the topological effect of surgery
is a finite connected-sum decomposition (possibly trivial) followed by removal of
connected components of positive curvature.

Corollary. If the manifold after surgery satisfies the Geometrization Con-
jecture, so does the original manifold.

Finite-time extinction

Inductively, after finitely many surgeries if the resulting manifold satisfies the
Geometrization Conjecture, so does the starting manifold. One is concerned about
whether the manifold could completely disappear after finitely many times of surg-
eries. The following theorem by Perelman answers this question affirmatively, as-
suming certain conditions on the fundamental group of M .

Theorem (Perelman, [17]). Suppose π1(M) is a free product of finite groups
and infinite cyclic groups. Then the Ricci flow with surgery constructed with (M, g0)
as initial condition becomes extinct at a finite time. In other words, Mn = ∅ for
some large n.
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Corollary. Under the same assumption on π1(M) as in the above theorem,
M is a finite connected-sum of manifolds with semi-positive, locally homogeneous
metric g, i.e. connected-sum of spherical space-forms and S2 × S1.

It also follows from the arguments in [17] that:

Theorem. In general, given any (M3, g0) and T1 < ∞, there exists T2 < ∞
such that every component of the time-slice of Ricci flow with surgery beginning
with (M3, g0) is either aspherical, or S3 and if it is an S3 then it is created by a
trivial surgery at time ≥ T1.

To complete the proof of the Geometrization Conjecture we must also consider
the complementary case when the Ricci flow with surgery exist for all times. Clearly
in this case we must study the limits as t → ∞. That we discuss in the next lecture.





Lecture 5

In this lecture we complete the outline of the proof of the Geometrization
Conjecture by indicating how one shows it holds for the large time-slices of a Ricci
flow with surgery.

Let us first recall our notations for Ricci flow with surgery. Let (M3, g0) be a
compact Riemannian 3-manifold, 0 = t0 < t1 < t2 < · · · are surgery times and for
each n, (Mn, gn(t)) is a Ricci flow for t ∈ [tn, tn+1) where Mn+1 is made from Mn

by surgery. Also, we will denote (Mt, g(t)) to be the t time-slice in the Ricci flow
with surgery.

We mentioned the following two important results:

(1) If Mt satisfies the Geometrization Conjecture for some t, then so does Mt′

for any t′ < t. In particular, so does M = M0.
(2) For t � 1, every connected component of Mt is either an S3 or aspherical.

For the rest of this lecture, we fix a Ricci flow with surgery (Mt, g(t)). To finish
the proof of the Geometrization Conjecture, we need to understand the nature of
(Mt, g(t)) for sufficiently large t. This involves the notion of geometric limits.

Geometric limits

Definition (Geometric limit). (Mn, gn, xn) is said to be converging to
(M∞, g∞, x∞) geometrically if for every compact K ⊂ M∞, x∞ ∈ K, for all
n sufficiently large, there are embeddings φn : (K,x∞) → (Mn, xn) such that the
pull-back metric φ∗

ngn converges to g∞|K in C∞-topology.

xn

xn

x∞

x∞

Figure 11. Geometric limit with respect to different marked points

Define the function ρ : Mt → (0,∞) by setting ρ(x, t) equal to the maximum
number such that Rm|B(x,t,ρ(x,t)) ≥ −ρ−2(x, t). Fix w > 0, we define

Mt,thick(w) = {(x, t) ∈ Mt : Vol(B(x, t, ρ(x, t))) ≥ wρ3(x, t)}.
The structure of Mt,thick(w) follows from the convergence theorem:

21
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Theorem (Hamilton [6]; Perelman [16]). Let (xn, tn) be a sequence of points
in Mtn,thick(w) with tn → ∞, then after passing to a subsequence, the rescaled
sequence (Mtn ,

1
tn
g(tn), (xn, tn)) converges geometrically to (H, ghyp, x) which is a

complete, finite volume hyperbolic 3-manifold with constant curvature − 1
4 .

A heuristic explanation of the constant − 1
4 is by the evolution equation of the

scalar curvature:

∂R

∂t
= ∆R + 2|Ric0|2 + 2

3
R2.

Since hyperbolic manifolds have constant scalar curvature and are Einstein, we have
∂R
∂t = 2

3R
2. Solving the equation we have

R(t) =
3

3
R(0) − 2t

.

Note that R( 1
tn
gn(t)) = tnR(gn(t)), so the scalar curvature of the rescaled metric

is asymptotically converging to − 3
2 and thus on the limiting hyperbolic manifold,

we have sectional curvature equals − 1
4 .

Hyperbolic limits

There is a stronger result that gives a more global picture around the non-
collapsed parts:

Theorem (Hamilton [6]; Perelman [16]). There exists a finite set H =
∐k

i=1 Hi

of complete, finite volume hyperbolic 3-manifolds with curvature − 1
4 such that the

following holds:
Fix w > 0 sufficiently small, let H(w/2) be the truncation of H at horospherical

tori of area w
2 . For each t � 1, there exists an embedding φt : H(w/2) ↪→ (Mt, g(t))

such that φ∗
t (

1
t g(t)) converges smoothly to ghyp|H(w/2) and the image φt(H(w/2)) ⊃

Mt,thick(w).

Area = w
2

Figure 12. truncation on a hyperbolic space

Furthermore, the following result by Hamilton tells us the boundary tori are
incompressible:

Theorem (Hamilton [6]). The image φt(∂H(w/2)) consists of incompressible
tori for any t sufficiently large.
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The thin part

The non-collapsed part Mt,thick(w) is pictorially the ‘̀thick” part of the mani-

fold. For the ‘̀thin” part, we define

Mt,thin(w) = Mt − φt(Int(H(w/2)).

By the previous theorems, we know that Mt,thin(w) is a compact 3-manifold with
boundary and ∂Mt,thin(w) is a finite disjoint union of incompressible tori which are
convex in the induced metric.

When restricted to this locally collapsed part, the function ρ defined before
will satisfy Rm|B(x,t,ρ(x,t)) ≥ −ρ−2(x, t) and Vol(B(x, t, ρ(x, t))) < wρ3(x, t) for
any (x, t) ∈ Mt,thin(w). We say the part Mt,thin(w) is locally volume collapsed on
the negative curvature scale.

Take wn → 0. For each n take tn sufficiently large depending on wn and such
that tn → ∞. Let (Nn, gn) = (Mtn,thin(wn),

1
tn
g(tn)) be a sequence of compact

manifolds, which are locally volume collapsed on negative curvature scale and which
have convex boundary consisting of incompressible tori. Then for any sequence
xn ∈ Nn, we have

Vol(B(xn, tn, ρ(xn, tn)))

ρ(xn, tn)3
→ 0 as n → ∞

The following theorem tells us the structure of these Nn:

Theorem. Given (Nn, gn, wn) as before, for all sufficiently large n, there exists
a disjoint union of 2-tori in Nn, denoted Jn ⊂ Nn, such that every complementary
component is Seifert fibered.

In fact, an easy topological argument (using the fact that each component of
Nn is either S3 or aspherical) allows us to modify Jn and show that there exists

a disjoint union Ĵn of incompressible tori cross I and twisted I-bundles over Klein
bottles so that each component of Nn − Ĵn has a geometric structure.

Alexandrov spaces

In order to prove the previous theorem we must study manifolds and more
general metric spaces with curvature bounded below.

Here is a classical theorem that characterizes manifolds with curvature bounded
below by −1:

Theorem. (M, g) has sectional curvature ≥ −1 if and only if the following
holds:

Given a, b, x ∈ M , find ã, b̃, x̃ in hyperbolic plane with the same pairwise dis-
tance, e.g. d(a, x) = d(ã, x̃). Define ∠̃axb = ∠ãx̃b̃, then for any four points

a, b, c, x ∈ M we have ∠̃axb+ ∠̃bxc+ ∠̃cxa ≤ 2π.

We use this to motivate the following definition. An Alexandrov space with
curvature ≥ −1 is a complete metric space X with the property that any two
points are the endpoints of an isometric embedding of an interval into X (such
spaces are length spaces) and such that the above inequality holds for all quadru-
ples of points {x; a, b, c} in X. There is an analogous definition for an Alexandrov
space with curvature ≥ k for any k; one replaces the hyperbolic plane by the com-
plete simply-connected surface of constant curvature k.
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One defines the dimension of an Alexandrov space as its Hausdorff dimension.
This turns out to be either an integer or +∞. If it is an integer N then the
Alexandrov space has an open dense set that is a topological N -manifold.

b
a

x

c

M3

θ̃

θ̃
′

θ̃
′′

θ̃ + θ̃
′
+ θ̃

′′ ≤ 2π

H

Figure 13. angle comparison

We have the following the convergence result for manifolds with curvature
bounded below by −1:

Lemma (Burago-Gromov-Perelman [2]). If (Mn, gn, xn) is a sequence of com-
plete N dimensional Riemannian manifolds with sectional curvature ≥ −1, then
after passing to a subsequence they limit in the Gromov-Hausdorff topology to an
Alexandrov space of curvature ≥ −1 with of dimension ≤ N .

We would like to understand the locally collapsed part of the manifold as t →
∞. We apply the above lemma to the sequence of rescaled balls 1

ρ(xn)
B(xn, ρ(xn))

where xn ∈ Nn. By our choice of ρ, the rescaled balls have curvature bounded
below by -1. The limit of these balls is an Alexandrov space so understanding the
locally collapsed part will follow from classifying all possible Alexandrov spaces
that occur as limits.

The possible Gromov-Hausdorff limit of Alexandrov spaces must have dimen-
sion 0, 1, or 2 (dimension 3 is ruled out by the fact that the volumes of these balls
are converging to 0).

In case when the limit is of dimension 0, the limit is a point, i.e. diam
ρn

→ 0. The

rescaled balls
√

ρn

diamBn therefore are complete and have diameter 1 and curvature

≥ −diam
ρn

→ 0, so that the metric converges to a flat metric. Here, we use parabolic

regularity to get smooth convergence of the metric.
In case when the limit is of dimension 1, possible limits are intervals [a, b), (a, b)

or [a, b] and S1. If the limit is either an open interval or the circle then the corre-
sponding part of Nn is a fibration over this base with fiber either S2 or T 2. In the
case of endpoints we add in either a solid torus or a twisted I-bundle over the Klein
bottle (when the generic fiber is a torus) or a 3-ball or a puncture RP 3 (when the
generic fiber is a two-sphere) for each endpoint.

In case when the limit is of dimension 2, the limit is a topological manifold which
may contain some non-smooth parts like a cone. In this case the corresponding part
of Nn is Seifert fibered. One can then glue these local models together in order to
prove the theorem.



Summary of Part 1

This completes PART 1 of these notes - namely the overview of the argument.
We have discussed the existence of Ricci flow with surgery defined for all 0 ≤ t <
∞ beginning with any (normalized) initial compact Riemannian 3-manifold. We
have examined the topological effect of surgery (connected sum decomposition and
removal of topologically standard components). As a consequence, we saw that if
any time-slice in a Ricci flow with surgery satisfies the Geometrization Conjecture
then so does the initial manifold. This reduces the proof of the Geometrization
Conjecture to the study of the time-slices for sufficiently large t. We then outlined
the fact that for initial conditions (M3, g(0)) where π1(M

3) is a free product of
finite groups and infinite cyclic groups, the Ricci flow with surgery becomes extinct
in finite time. Consequently, these manifolds are connected sums of manifolds
admitting positive and semi-positive metrics (i.e. those modeled on S3 and S2×R).

Finally, we examined the nature of the t time-slice, for t sufficiently large, in
general. We indicated that this time-slice decomposed along incompressible tori
into thick and thin parts, and on the thick parts the metric of the Ricci flow is
(after rescaling by 1

t ) becoming hyperbolic with constant curvature − 1
4 . Lastly, we

examined the nature of the thin pieces and indicated that by metric/topological
arguments one could show that they decompose and incompressible tori and Klein
bottles into pieces admitting complete locally homogeneous metrics of finite volume.
This then will complete the proof of the Geometrization Conjecture.

The rest of these lectures will examine in turn all of these issues, beginning
with non-collapsing results which we examine in Part 2.
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