AMS Bookstore LOGO amslogo
Return to List  Item: 1 of 1   
Ricci Flow and the Sphere Theorem
Simon Brendle, Stanford University, CA

Graduate Studies in Mathematics
2010; 176 pp; hardcover
Volume: 111
ISBN-10: 0-8218-4938-7
ISBN-13: 978-0-8218-4938-5
List Price: US$47
Member Price: US$37.60
Order Code: GSM/111
[Add Item]
See also:

Ricci Flow and Geometrization of 3-Manifolds - John W Morgan and Frederick Tsz-Ho Fong

Low Dimensional Topology - Tomasz S Mrowka and Peter S Ozsvath

In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman's solution of the Poincaré conjecture. Furthermore, various convergence theorems have been established.

This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold, whose sectional curvatures all lie in the interval (1,4], is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen.

This text originated from graduate courses given at ETH Zürich and Stanford University, and it is directed at graduate students and researchers. The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required.

Request an examination or desk copy.


Graduate students and research mathematicians interested in differential geometry and topology of manifolds.


"This book is a great self-contained presentation of one of the most important and exciting developments in differential geometry. It is highly recommended for both researchers and students interested in differential geometry, topology and Ricci flow. As the main technical tool used in the book is the maximum principle, familiar to any undergraduate, this book would make a fine reading course for advanced undergraduates or postgraduates and, in particular, is an excellent introduction to some of the analysis required to study Ricci flow."

-- Huy The Nyugen, Bulletin of the LMS

"This is an excellent self-contained account of exciting new developments in mathematics suitable for both researchers and students interested in differential geometry and topology and in some of the analytic techniques used in Ricci flow. I very strongly recommend it."

-- Jahresbericht Der Deutschen Mathematiker - Vereinigung

Powered by MathJax
Return to List  Item: 1 of 1   

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia