AMS Bookstore LOGO amslogo
Return to List

AMS TextbooksAMS Applications-related Books

Generalized Bialgebras and Triples of Operads
Jean-Louis Loday, Centre National de la Recherche Scientifique, Strasbourg, France
A publication of the Société Mathématique de France.
cover
Astérisque
2008; 114 pp; softcover
Number: 320
ISBN-10: 2-85629-257-7
ISBN-13: 978-2-85629-257-0
List Price: US$42
Individual Members: US$37.80
Order Code: AST/320
[Add Item]

This book introduces the notion of generalized bialgebra, which includes the classical notion of bialgebra (Hopf algebra) and many others, among them the tensor algebra equipped with the deconcatenation as coproduct. The author proves that, under some mild conditions, a connected generalized bialgebra is completely determined by its primitive part. This structure theorem extends the classical Poincaré-Birkhoff-Witt theorem and Cartier-Milnor-Moore theorem, valid for cocommutative bialgebras, to a large class of generalized bialgebras.

Technically, the author works in the theory of operads which allows him to state his main theorem and permits him to give it a conceptual proof. A generalized bialgebra type is determined by two operads: one for the coalgebra structure \(\mathcal{C}\) and one for the algebra structure \(\mathcal{A}\). There is also a compatibility relation relating the two. Under some conditions, the primitive part of such a generalized bialgebra is an algebra over some sub-operad of \(\mathcal{A}\), denoted \(\mathcal{P}\) . The structure theorem gives conditions under which a connected generalized bialgebra is cofree (as a connected \(\mathcal{C}\)-coalgebra) and can be reconstructed out of its primitive part by means of an enveloping functor from \(\mathcal{P}\)-algebras to \(\mathcal{A}\)-algebras. The classical case is \((\mathcal {C, A, P})=(Com, As, Lie)\).

This structure theorem unifies several results, generalizing the PBW and the CMM theorems, scattered in the literature. The author treats many explicit examples and suggests a few conjectures.

A publication of the Société Mathématique de France, Marseilles (SMF), distributed by the AMS in the U.S., Canada, and Mexico. Orders from other countries should be sent to the SMF. Members of the SMF receive a 30% discount from list.

Readership

Graduate students and research mathematicians interested in algebra.

Table of Contents

  • Introduction
  • Algebraic operads
  • Generalized bialgebra and triple of operads
  • Applications and variations
  • Examples
  • Duplicial bialgebras
  • Appendix
  • Bibliography
  • Index
Powered by MathJax

  AMS Home | Comments: webmaster@ams.org
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia