
Preface  Introduction  Preview Material  Table of Contents  Index  Supplementary Material 
Graduate Studies in Mathematics 2014; 192 pp; hardcover Volume: 152 ISBN10: 1470410478 ISBN13: 9781470410476 List Price: US$57 Member Price: US$45.60 Order Code: GSM/152 See also: Comparison Theorems in Riemannian Geometry  Jeff Cheeger and David G Ebin Variational Problems in Geometry  Seiki Nishikawa The Geometrization Conjecture  John Morgan and Gang Tian  A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higherdimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of KählerEinstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and ArezzoPacard's existence theorem for constant scalar curvature Kähler metrics on blowups. Readership Graduate students and research mathematicians interested in geometric analysis and Kähler geometry. Reviews "This is an important book, in a rapidlydeveloping area, that brings the specialist or graduate student working on Kähler geometry to the frontiers of today research. It is not a selfcontained textbook. The prerequisites in geometric invariant theory, for example, would require some devotion from a potential reader grounded on Riemannian geometry; viceversa, a reader broughtup in algebraic geometry would have to make an effort to follow the part on analysis or differential geometry. The rewards for these efforts justify everything: the book is well organized, and when it sketches an argument, there are precise pointers to the literature for full details."  MAA Reviews 


AMS Home 
Comments: webmaster@ams.org © Copyright 2014, American Mathematical Society Privacy Statement 