AMS Bookstore LOGO amslogo
Return to List

AMS TextbooksAMS Applications-related Books

Constant Mean Curvature Immersions of Enneper Type
Henry C. Wente

Memoirs of the American Mathematical Society
1992; 77 pp; softcover
Volume: 100
ISBN-10: 0-8218-2536-4
ISBN-13: 978-0-8218-2536-5
List Price: US$29
Individual Members: US$17.40
Institutional Members: US$23.20
Order Code: MEMO/100/478
[Add Item]

Request Permissions

This work is devoted to the case of constant mean curvature surfaces immersed in \(R^3\) (or, more generally, in spaces of constant curvature). Wente reduces this geometrical problem to finding certain integrable solutions to the Gauss equation. Many new and interesting examples are presented, including immersed cylinders in \(R^3\) with embedded Delaunay ends and \(n\)-lobes in the middle, and one-parameter families of immersed cmc tori in \(R^3\). Finally, Wente examines minimal surfaces in hyperbolic three-space, which is in some ways the most complicated case.


Differential geometers interested in the theory of constant mean curvature surfaces and minimal surfaces. Experts in integrable systems of differential equations.

Table of Contents

  • The differential geometry
  • \(H=1/2\) immersions in \(R^3\)
  • Minimal surfaces in \(R^3\)
  • Minimal surfaces in \(H^3\)
  • Illustrations
  • Bibliography
Powered by MathJax

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia