AMS Bookstore LOGO amslogo
Return to List

AMS TextbooksAMS Applications-related Books

Quantum Linear Groups and Representations of \(GL_n({\mathbb F}_q)\)
Jonathan Brundan, University of Oregon, Eugene, OR, Richard Dipper, Universität Stuttgart, Germany, and Alexander Kleshchev, University of Oregon, Eugene, OR
SEARCH THIS BOOK:

Memoirs of the American Mathematical Society
2001; 112 pp; softcover
Volume: 149
ISBN-10: 0-8218-2616-6
ISBN-13: 978-0-8218-2616-4
List Price: US$53
Individual Members: US$31.80
Institutional Members: US$42.40
Order Code: MEMO/149/706
[Add Item]

Request Permissions

We give a self-contained account of the results originating in the work of James and the second author in the 1980s relating the representation theory of \(GL_n(\mathbb{F}_q)\) over fields of characteristic coprime to \(q\) to the representation theory of "quantum \(GL_n\)" at roots of unity.

The new treatment allows us to extend the theory in several directions. First, we prove a precise functorial connection between the operations of tensor product in quantum \(GL_n\) and Harish-Chandra induction in finite \(GL_n\). This allows us to obtain a version of the recent Morita theorem of Cline, Parshall and Scott valid in addition for \(p\)-singular classes.

From that we obtain simplified treatments of various basic known facts, such as the computation of decomposition numbers and blocks of \(GL_n(\mathbb{F}_q)\) from knowledge of the same for the quantum group, and the non-defining analogue of Steinberg's tensor product theorem. We also easily obtain a new double centralizer property between \(GL_n(\mathbb{F}_q)\) and quantum \(GL_n\), generalizing a result of Takeuchi.

Finally, we apply the theory to study the affine general linear group, following ideas of Zelevinsky in characteristic zero. We prove results that can be regarded as the modular analogues of Zelevinsky's and Thoma's branching rules. Using these, we obtain a new dimension formula for the irreducible cross-characteristic representations of \(GL_n(\mathbb{F}_q)\), expressing their dimensions in terms of the characters of irreducible modules over the quantum group.

Readership

Graduate students and research mathematicians interested in group theory and generalizations.

Table of Contents

  • Introduction
  • Quantum linear groups and polynomial induction
  • Classical results on \(GL_n\)
  • Connecting \(GL_n\) with quantum linear groups
  • Further connections and applications
  • The affine general linear group
  • Bibliography
Powered by MathJax

  AMS Home | Comments: webmaster@ams.org
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia