AMS Bookstore LOGO amslogo
Return to List

AMS TextbooksAMS Applications-related Books

Differential Geometry: Curves - Surfaces - Manifolds, Second Edition
Wolfgang Kühnel, University of Stuttgart, Germany

New Edition Coming Soon ... STML/77


Student Mathematical Library
2006; 380 pp; softcover
Volume: 16
ISBN-10: 0-8218-3988-8
ISBN-13: 978-0-8218-3988-1
List Price: US$54
Institutional Members: US$43.20
All Individuals: US$43.20
Order Code: STML/16.R
[Add Item]

Request Permissions

See also:

Mostly Surfaces - Richard Evan Schwartz

Curves and Surfaces: Second Edition - Sebastian Montiel and Antonio Ros

Differential Geometry: Curves -- Surfaces -- Manifolds, Third Edition - Wolfgang Kuhnel

Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in \(I\!\!R^3\) that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas.

With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces.

The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces.

The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces.

The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.

Request an examination or desk copy.


Undergraduate and graduate students, as well as research mathematicians, interested in differential geometry.


From a review of the German edition:

"The book covers all the topics which could be necessary later for learning higher level differential geometry. The material is very carefully sorted and easy-to-read."

-- Mathematical Reviews

From a review of the first edition:

"It is extraordinarily welcome that this comprehensive textbook containing all the high points of differential geometry is now available in an English translation. Required reading for all mathematicians!"

-- translated from International Mathematical News

Table of Contents

  • Notations and prerequisites from analysis
  • Curves in \(I\!\!R^n\)
  • The local theory of surfaces
  • The intrinsic geometry of surfaces
  • Riemannian manifolds
  • The curvature tensor
  • Spaces of constant curvature
  • Einstein spaces
  • Bibliography
  • List of notation
  • Index
Powered by MathJax

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia