AMS Bookstore LOGO amslogo
Return to List

AMS TextbooksAMS Applications-related Books

Elementary Geometry
Ilka Agricola and Thomas Friedrich, Humboldt-Universität zu Berlin, Germany
Translated by Philip G. Spain

Student Mathematical Library
2008; 243 pp; softcover
Volume: 43
ISBN-10: 0-8218-4347-8
ISBN-13: 978-0-8218-4347-5
List Price: US$42
Institutional Members: US$33.60
All Individuals: US$33.60
Order Code: STML/43
[Add Item]

Request Permissions

Elementary geometry provides the foundation of modern geometry. For the most part, the standard introductions end at the formal Euclidean geometry of high school. Agricola and Friedrich revisit geometry, but from the higher viewpoint of university mathematics. Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries by their number of fixed points. Complex numbers are introduced to provide an alternative, very elegant approach to plane geometry. The authors then treat spherical and hyperbolic geometries, with special emphasis on their basic geometric properties.

This largely self-contained book provides a much deeper understanding of familiar topics, as well as an introduction to new topics that complete the picture of two-dimensional geometries. For undergraduate mathematics students the book will be an excellent introduction to an advanced point of view on geometry. For mathematics teachers it will be a valuable reference and a source book for topics for projects.

The book contains over 100 figures and scores of exercises. It is suitable for a one-semester course in geometry for undergraduates, particularly for mathematics majors and future secondary school teachers.


Undergraduate students interested in plane geometry.


"...comprehensive in scope, uncovering key ideas ranging from Euclidean geometry to transformations to affine systems to non-Euclidean geometries. ...The authors neither cut corners nor 'wave' at neat ideas; rather, they try to connect everything via a quite rigorous development, complete with well-chosen exercises."

-- CHOICE Reviews

"The book is nicely written, with numerous figures, and the material in the book is organized systematically. It can be widely used by university students and teachers."

-- EMS Newsletter

Powered by MathJax

  AMS Home | Comments:
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia