
Preview Material  Supplementary Material 
 This book is devoted to the applications of probability theory to the theory of nonlinear partial differential equations. More precisely, it is shown that all positive solutions for a class of nonlinear elliptic equations in a domain are described in terms of their traces on the boundary of the domain. The main probabilistic tool is the theory of superdiffusions, which describes a random evolution of a cloud of particles. A substantial enhancement of this theory is presented that will be of interest to anyone who works on applications of probabilistic methods to mathematical analysis. The book is suitable for graduate students and research mathematicians interested in probability theory and its applications to differential equations. Also of interest by this author is Diffusions, Superdiffusions and Partial Differential Equations in the AMS series, Colloquium Publications. Readership Graduate students and research mathematicians interested in probability theory and its applications to differential equations. Reviews "This book is written by a wellknown specialist in the theory of Markov processes and partial differential equation..."  Newsletter of the EMS Table of Contents



AMS Home 
Comments: webmaster@ams.org © Copyright 2014, American Mathematical Society Privacy Statement 