AMS Bookstore LOGO amslogo
Return to List

AMS TextbooksAMS Applications-related Books

Cyclic Feedback Systems
Tomáš Gedeon, Montana State University, Bozeman, MT
SEARCH THIS BOOK:

Memoirs of the American Mathematical Society
1998; 73 pp; softcover
Volume: 134
ISBN-10: 0-8218-0783-8
ISBN-13: 978-0-8218-0783-5
List Price: US$44
Individual Members: US$26.40
Institutional Members: US$35.20
Order Code: MEMO/134/637
[Add Item]

Study of dynamical systems usually concentrates on the properties and the structure of invariant sets, since the understanding of these is the first step in describing the long time behavior of orbits of the entire dynamical system. There are two different sets of problems related to the study of dynamical systems. One, the study of the dynamics in the neighborhood of the critical elements like fixed points or periodic orbits, is relatively well understood. This volume tackles the second set of problems, related to a global dynamics and the global bifurcations.

In this volume the author studies dynamics of cyclic feedback systems. The global dynamics is described by a Morse decomposition of the global attractor, defined with the help of a discrete Lyapunov function. The author shows that the dynamics inside individual Morse sets may be very complicated. A three-dimensional system of ODEs with two linear equations is constructed, such that the invariant set is at least as complicated as a suspension of a full shift on two symbols. The questions posed are perhaps as significant as the reported results.

Readership

Research mathematicians and graduate students interested in the structure of attractors (and repellors); biologists; electrical engineers.

Table of Contents

  • Introduction
  • Linear theory
  • Main results
  • Proofs of the Lemmas
  • Proof of Theorem 1.13
Powered by MathJax

  AMS Home | Comments: webmaster@ams.org
© Copyright 2014, American Mathematical Society
Privacy Statement

AMS Social

AMS and Social Media LinkedIn Facebook Podcasts Twitter YouTube RSS Feeds Blogs Wikipedia