
Preface  Table of Contents  Supplementary Material 
University Lecture Series 2008; 147 pp; softcover Volume: 48 ISBN10: 082184735X ISBN13: 9780821847350 List Price: US$40 Member Price: US$32 Order Code: ULECT/48 See also: Surveys on Discrete and Computational Geometry: Twenty Years Later  Jacob E Goodman, Janos Pach and Richard Pollack  Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, Minkowski's classical theory is presented, including an application to multidimensional continued fraction expansions. The reduction theories of Voronoi are described in great detail, including full proofs, new views, and generalizations that cannot be found elsewhere. Based on Voronoi's second reduction theory, the local analysis of sphere coverings and several of its applications are presented. These include the classification of totally real thin number fields, connections to the Minkowski conjecture, and the discovery of new, sometimes surprising, properties of exceptional structures such as the Leech lattice or the root lattices. Throughout this book, special attention is paid to algorithms and computability, allowing computerassisted treatments. Although dealing with relatively classical topics that have been worked on extensively by numerous authors, this book is exemplary in showing how computers may help to gain new insights. Readership Graduate students and research mathematicians interested in the geometry of numbers, discrete geometry, and computational mathematics. Reviews "The book is a valuable contribution to the existing literature, filling a big gap."  Mathematical Reviews 


AMS Home 
Comments: webmaster@ams.org © Copyright 2014, American Mathematical Society Privacy Statement 