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MATHEMATICS, WORD PROBLEMS, COMMON SENSE, AND

ARTIFICIAL INTELLIGENCE

ERNEST DAVIS

Abstract. The paper discusses the capacities and limitations of current ar-
tificial intelligence (AI) technology to solve word problems that combine ele-
mentary mathematics with commonsense reasoning. No existing AI systems
can solve these reliably. We review three approaches that have been devel-

oped, using AI natural language technology: outputting the answer directly,
outputting a computer program that solves the problem, and outputting a
formalized representation that can be input to an automated theorem veri-
fier. We review some benchmarks that have been developed to evaluate these
systems and some experimental studies. We discuss the limitations of the ex-
isting technology at solving these kinds of problems. We argue that it is not
clear whether these kinds of limitations will be important in developing AI
technology for pure mathematical research, but that they will be important
in applications of mathematics, and may well be important in developing pro-
grams capable of reading and understanding mathematical content written by
humans.

1. Introduction

A central aspect of the mathematics learned in grade school is understanding
how math applied in real-world situations and how mathematical analysis can be
used to answer questions about real things. Consider, for instance, the following
two elementary problems:

Problem 1. George has seven pennies, a dime, and three quarters.
Harriet has four pennies and four quarters. First, George gives
Harriet thirty-one cents in exact change; then Harriet gives him
back exactly half of her pennies. How much money does George
now have?

Problem 2. You have an empty cylindrical open container whose
inside has a diameter of 8 cm and a height of 20 cm. and a pitcher
with 200 ccs of water. You first empty the pitcher into the cylinder,
then put a solid rock cube, 4 cm on a side, into the container so
that it is sitting flush against the bottom of the container. What
is the height of the water in the container?

In recent years, artificial intelligence (AI) technology has made extraordinary
progress in a wide range of domains, such as playing recreational games, tagging
and generating images, transcribing speech, and translating between languages. In
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particular, in recent years AI has achieved extraordinary success at certain kinds
of language tasks, and, as discussed throughout this volume, noteworthy successes
at a range of mathematical tasks.

One might reasonably suppose, therefore, that problems as simple as Problems
1 and 2 above must be well within the capacities of the current AI technology.
However, that is not at all the case. As of May 2023, there does not exist any
AI that can reliably solve elementary mathematical word problems. The goal of
this article is to elaborate on that observation; to describe at a very high level
how the current technology works and what it can and cannot do. The paper
concludes (Section 4) with a brief and speculative discussion of the relevance of
these limitations to the prospect for using AI as a tool for research mathematics.1

2. Math word problems and world knowledge

Solving word problems like 1 and 2 above requires knowledge of three kinds.
First, and most obviously, there is the elementary math involved: elementary arith-
metic and solid geometry, respectively. Second, one has to know the language; if
these questions, as printed above in English, are presented to a speaker who knows
only Polish, then they will not be able to answer, no matter how well they know
the math. Third, and most easily overlooked, each of these requires basic knowl-
edge about the world, and an understanding of how the world is characterized
mathematically. In Problem 1, you have to know the value of US coins, but more
fundamentally, you have to understand the dynamics of possession and giving: If
A gives X to B, then the result is that B now has X and A no longer has X. In
Problem 2, you have to understand the basic physics of liquids and solids: solids
maintain their shape over time, liquids maintain their volume but not their shape,
solids and liquids do not overlap, and so on.

In many simple problems, a significant part of the real-world understanding
required is purely “common sense”—the basic understanding of the realities of daily
human existence that is shared by all people past early childhood.2 When people
work on problems of this kind, the commonsense knowledge and reasoning involved
is often so obvious that it goes entirely unnoticed; what is difficult is finding the
mapping to mathematics and carrying out the mathematics.

Other forms of world knowledge can also enter into solving math word problems.
Common knowledge, such as the value of US coins in Problem 1, can be culturally
dependent and is sometimes taught explicitly in schools, but is universal among
adults in the society under discussion. Encyclopedic knowledge is specific facts
about particular entities, such as the knowledge needed to answer the question,
“How much older, in days, was George Washington than Abraham Lincoln?” Expert

1Footnote added December 2023: This paper was written in May 2023. The state of the art
has advanced extremely rapidly, and though the general discussion here is still valid, some of
the specific examples and assertions are out of date. It did not seem worthwhile to rewrite the
paper, as the details in the new version would likewise again be outdated in six months. However,
on the suggestion of the editors, let me here list a few important works that have appeared
since. Experiments testing the capacity of systems that integrate ChatGPT with Python or with
Wolfram Alpha, as discussed in Sections 3.4.1 and 3.4.3 are reported in [13, 29]. A systematic
study of the inability of large language models including GPT-4 to solve word problems involving
simple linear orderings of a small number of objects is reported in [2]. For some interesting recent
results on autoformalization techology (Section 3.4.2), see [1,20].

2This characterization of common sense has obvious significant problems and limitations, but
it will suffice for our discussion here. An in-depth discussion will be found in [12].
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knowledge is knowledge held by experts but not by lay people. Obviously these
categories are vague and there is no point in trying to delimit them with any
precision.

A problem that calls on the combination of mathematics with world knowledge
will generally involve other cognitive capacities as well. If it is posed in language,
then it requires comprehension of the language. If the problem statement includes
mathematical notation or other technical notation (musical, chemical, etc.). then
that notation must be understood. If an embodied agent must solve a problem
in the physical world, then understanding it requires perception, most commonly
vision. If the problem involves a diagram or graph, then it requires vision plus an
understanding of the graphical conventions. If an embodied agent must carry out
a task in the real world, then that requires perception and manipulation.

It will be convenient to distinguish a number of categories of math problems. A
symbolic mathematics problem is one posed in mathematical notation with minimal
use of natural language (i.e., English, Russian, etc.), e.g., “Solve x3−6x2+11x−6 =
0”. A word problem is a mathematical problem with more than minimal use of nat-
ural language. A purely mathematical word problem is a word problem that makes
minimal reference to any nonmathematical concepts, e.g., “Find a prime number p
such that p+36 is a square number.”“What is the volume of a regular icosahedron
with diameter 5?” A real-world word problem is a word problem whose solution re-
quires the use of nonmathematical knowledge of some kind. A commonsense word
problem (CSW) is a word problem that involves significant use of commonsense
knowledge and perhaps also common knowledge, but not encyclopedic or expert
knowledge; this is the most important category for our purposes. Finally, an ele-
mentary commonsense word problem is a CSW that requires only elementary math,
however one chooses to draw that line (generally elementary school math or high
school math). Again, the lines delimiting these categories are vague.

Real-world word problems generally are common in grade-school math classes,
rarer in introductory college courses, and extremely rare in advanced college math
courses. They remain common in advanced courses in other topics that use mathe-
matics for applications; there, generally, the knowledge involved is primarily expert
knowledge, though commonsense knowledge often forms an underlying and largely
unobserved foundation.

3. Artificial intelligence for word problems

The challenge of developing AI systems that solve mathematical word problems
has been studied since Daniel Bobrow’s STUDENT system of 1964 [3]. Skipping
over the history of the problem over the subsequent 50 years, we will focus here on
recent systems that apply AI technology to math word problems.

Progress in AI over the last twenty years has been almost entirely driven by
machine learning (ML). Broadly speaking, in machine learning, a general-purpose
computational architecture—with little or no built-in knowledge of the domain or
the task—is trained on a collection of relevant data, and it finds underlying patterns
in the data that it can use3 to carry out the task with some degree of accuracy.
Almost all current AI programs are built around machine learning mechanisms.
In many cases, the AI program consists of a single module with a generic ML

3I am including supervised learning, unsupervised learning. and reinforcement learning in this
general category.
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architecture formatting at the front and back ends. A notable example was the
AI that were used in 2021 to suggest a new theorem in knot theory, as described
in [8] and [10]. The AI used in that project was an off the shelf deep-learning
architecture; what was difficult in that project was preparing the training data
and interpreting the results. Other AI systems require a complex, hand-crafted
architecture that integrates multiple modules, some trained with ML, some built
with traditional approaches to programming. Much recent work in robotics is in
this category. Another recent example is the Cicero system, which plays the game
Diplomacy [5].

3.1. Large language models. As discussed above, solving CWPs requires com-
bining commonsense reasoning, language abilities, and mathematics. For the last
five or six years, both natural language processing (NLP) and (more surprisingly)
commonsense reasoning in AI has been entirely dominated by one particular tech-
nology known as large language models (LLMs) (in current AI parlance “model”
means “computer program”). Almost all recent work on math word problems has
an LLM at the core.4

Large language models are the most recent development of thirty years of study
of how neural network AI technology (now often called “deep learning”) can be
applied to language-oriented tasks. We will not attempt a technical description of
their workings here (see [30] for an introduction and [16] for more detail), but we
will describe the characteristics most important for our discussion here.

The user of an LLM inputs a text, called the prompt; the LLM’s task is to
generate a plausible continuation of the prompt. The LLM generates its response
word by word; or, more precisely, token by token. (A token is an element of text:
a word, a fragment of a word, a punctuation mark, a mathematical symbol, etc.)
That is: A front-end program (tokenizer) divides the user’s input into a token
sequence w1 . . . wn. The LLM first computes the most probable (or, depending on
the settings, a reasonably probable) next token wn+1. It next computes the token
wn+2 that is most likely to follow w1 . . . wn+1. And so on; it repeatedly computes
the most probable next token, until it reaches a halting state. (Chatbots such as
ChatGPT have some additional mechanisms so that they engage in dialogue rather
than monologues.) The problem of generating a probable next token after a given
string is known as the “language modeling” task.

The generation of text is thus driven by the conditional probability of producing
token wn following w1 . . . wn−1, P (wn | w1 . . . wn−1). The AI computes this in terms
of a function f�α(w1 . . . wn) which is implicitly encoded in the network structure of
the AI. This function f�α is controlled by a parameter �α, a real-valued vector. In
current systems, the dimension of �α ranges between about 109 and 1012.

The training set for the LLM is a vast corpus of text (1010–1013 tokens) down-
loaded from the web. Detailed accounts of the content of these corpora have not, in
general, been published;5 but it is safe to say that the majority consist of English
language documents of various kinds, but that the training corpora also include
substantial quantities of texts in other languages, of software written in popu-
lar computer languages, of mathematics in mathematical notation, of images, and
other kinds of data.

4An exception is WolframAlpha, discussed in Section 3.4.3.
5The BigScience large language model is an important and admirable exception. https://

bigscience.huggingface.co/blog/model-training-launched

https://bigscience.huggingface.co/blog/model-training-launched
https://bigscience.huggingface.co/blog/model-training-launched
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Training the LLM consists of finding the value of the parameter �α such that the
probability function P (wn | w1 . . . wn−1) = f�α(w1 . . . wn) matches the training set
T as closely as possible. That is, there is an error function ET (�α) that measures
the discrepancy between the system’s predictions and the actual sequences in T
when the AI uses f�α to generate predictions. The value of �α is chosen to (approx-
imately) minimize ET (�α). This minimization uses a gradient descent algorithm.
The training process requires enormous amounts of computation—months of com-
putation time on large networks of computers—as well as a substantial amount of
expert human labor. It is feasible only for large AI labs, not for individual academic
researchers or small companies.

This training procedure for an LLM is carried out only once, when the LLM is
created. However, it is possible to further “fine-tune” an LLM to a particular task
by further training on texts specifically relevant to that task.

The underlying architecture of the LLM—which determines the function f�α—
and the training procedure are both very general in structure and are built to carry
out prediction for essentially any kind of input string with some kinds of regulari-
ties. They do not reflect any knowledge of the characteristics of natural language
generally, of any particular language, of the external world that language describes,
of the various uses of language, or of any task other than string prediction. All the
knowledge of language, its meaning, and its content that the system possesses is in
terms of how best to carry out prediction over the training set.

As with all AI systems based on neural networks/deep learning, the function f�α is
opaque, in the sense that it is extremely difficult to find a relation between the vector
�α and the behavior of the system, either on a particular example or in general. It is
therefore generally impossible to incorporate any of what is known about language,
the world, or mathematics into the system other than through training. It is also
impossible to debug errors as is done in “conventional” computer programming.
All that can be done is to retrain the system from scratch (or, in rare cases, to add
a hand-crafted patch at the back-end to deal with the problem).

In earlier NLP research, different tasks—question answering, chatbots, summa-
rization, information extraction, translation, and so on—were each handled sepa-
rately by systems built specifically for that purpose. However, in the last three or
four years, it has turned out that language modeling tasks can serve as a basis for
all of these; indeed, for any task where the input and output are in language [4].
For many language-oriented tasks, LLMs can be as effective or more effective as
software systems carefully designed for the task.

It has also turned out, quite unexpectedly, that the quality of answers generated
by the very large LLMs can often be significantly improved by including a handful of
examples of the kind of output desired in the prompt, or even by including general
directives such as, “Let’s think about this step by step.” Thus, if you want it to
translate from German to English, it helps to include a few examples of translation
in the prompt; if you want it to answer mathematical questions of a particular kind,
it helps to include a few examples of that kind of problem in the prompt. This is
known as “few-shot prompting”; it was first observed in the LLM GPT-3, released
in 2020 [6]. It has given rise to a new area of study: “prompt engineering”, the
creation of prompts that guide LLMs to correct outputs of the proper form.

LLMs are prone to so-called hallucinations : since they have no sense of under-
lying reality, they often generate text that reads smoothly and is presented in a
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completely confident tone but which is actually incoherent or false. Depending on
circumstances, a human reader can find this amusing, frightening, annoying, or
misleading. It can therefore be very dangerous to trust the text produced by an
LLM without checking its veracity.

3.2. A fallacious proof generated by GPT-4. Because large language models
generate output one word at a time, they have no ability either to plan ahead
what they are going to say overall or to go back and correct errors. Thus a slight
misstep at one point can lead them down a wrong path. When trying to generate
a mathematical proof, this can be catastrophic.

Table 1 shows a fallacious proof of Fermat’s little theorem generated by Bing
Chat, a chatbot that is publicly accessible via the Microsoft Bing search engine. As
of May 2023, Bing Chat is powered by the LLM GPT-4.

This “proof” is clearly a misremembering of a correct proof by induction; one
can easily prove the theorem in the form ap = a mod p by induction on a using
the binomial theorem.6 GPT-4 gets it almost right, but, since it tries to prove the
theorem in the form ap−1 = 1 mod p directly, it is led into increasing absurdity,
first claiming that p divides p− 1 (and, implicitly, that all the binomial coefficients
are divisible by p− 1) and then failing to notice that the conclusion it thinks it has
proved is different from the premise needed for the induction.

In a neutral context, GPT-4 would certainly not confuse the formula ap−1 = 2
mod p with the formula ap−1 = 1 mod p or accept the claim that p− 1 is divisible
by p. But it does not consider those to be impossible propositions, merely unlikely
sequences of tokens; and apparently, given the high probability it assigns to the
idea that it can complete the proof in a way that resembles the proofs it has seen,
it is willing to accept these steps despite their inherent low probability.

3.3. LLMs’ abilities at common sense, math, and language. Outside a
mathematical context, LLMs achieve significant levels of success at commonsense
reasoning, though they are certainly not reliable, and they have been steadily im-
proving over time. Unquestionably, LLM-based AIs are currently the most powerful
and general publicly available7 technology for commonsense reasoning that have
been built.

LLMs have also displayed some mathematical abilities. GPT-3, when origi-
nally released in 2020 [6], was tested on simple integer arithmetic problems. When
prompted with a few correct examples, it achieved 100% accuracy on two-digit ad-
dition (e.g., “What is 35 plus 72?”) with gradually diminishing accuracy as the
number of digits increased, though only 21.3% accuracy on problems involving two
arithmetic operations and one-digit numbers (e.g., “What is (2 + 4) * 6?”). More
recent systems have achieved significantly higher levels of success [26] but the gen-
eral pattern remains. LLMs can also often—though unreliably—generate correct

6Thanks to Aravind Srinivasan for pointing this out.
7The CYC project [19], begun in 1985 and still ongoing, aims at encoding commonsense knowl-

edge in a quasi-logical symbolic system and using automated inference to do commonsense rea-
soning. It is certainly large: it contains some millions of “concepts” and tens of millions of
propositions, and it represents several hundred person-years of expert human labor. However, the
contents are proprietary: no systematic description, evaluation, or benchmark test has ever been
published, and the scientific literature on its workings is very small. Consequently, it is impossible
for outsiders to know what its capabilities are.
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Table 1. A false proof generated by Bing Chat, powered by GPT-
4. Experiment by the author, 5/20/2023.

User: Can you give me a proof of Fermat’s little theorem?

BingChat: Sure! There are two main ways to prove Fermat’s Little Theorem;
one is by using the induction method and the other is by using group
theory. Which one would you like?
[The group theory proof generated by Bing Chat is based on the theorem that
the size of a finite group G is divisible by the order of any element a ∈ G. The
proof as presented by Bing Chat is flawed but on the right track]

User: The induction method.

BingChat: Sure! Here’s a proof of Fermat’s Little Theorem using the induc-
tion method.
Fermat’s Little Theorem states that if p is a prime number and a is an integer
not divisible by p, then ap−1 is congruent to 1 modulo p.

Proof by Induction: Let’s assume that p is a prime number and a is an
integer not divisible by p.
We will prove that ap−1 is congruent to 1 modulo p by induction on a.

Base case: When a=1, we have 1p−1=1, which is congruent to 1 modulo p.
So the base case holds.

Inductive step: Assume that the statement holds for some integer k, i.e.,
kp−1 is congruent to 1 modulo p. We need to show that the statement also
holds for k + 1, i.e., (k + 1)p−1 is congruent to 1 modulo p.
Expanding (k + 1)p−1 using the binomial theorem, we get:

(k + 1)p−1 = kp−1 + (p− 1) · kp−2 + · · ·+ (p− 1) · k + 1

Since kp−1 is congruent to 1 modulo p by the induction hypothesis, we can
replace it with 1 in the above expression:

(k + 1)p−1 = 1 + (p− 1) ∗ kp−2 + · · ·+ (p− 1) ∗ k + 1

Now, all the terms in the above expression except for the first and last terms
are divisible by p, since p− 1 is divisible by p. So we can simplify the above
expression as follows:

(k + 1)p−1 = 2 mod p

Thus, (k + 1)p−1 is congruent to 2 modulo p. This completes the inductive
step.
By induction, we have shown that for any integer a not divisible by p, ap−1 is
congruent to 2 modulo p. This completes the proof of Fermat’s Little Theorem
using the induction method.

mathematics at a higher level as illustrated by the “proof” of Fermat’s little theo-
rem above in Table 1. Though the proof overall is wrong, many of the individual
components—the form of a proof by induction, the binomial coefficients, to the
extent that they are given—are correct.
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Finally, LLMs are fundamentally language technology, and in many respects their
purely linguistic abilities are extraordinary and flawless. The current generation of
LLMs can produce essays several paragraphs long that, in their language use, are
often indistinguishable from capable human writers. I have only once seen them
make a grammatical error in writing modern English (a failure of subject-verb
number agreement in a tricky case).

LLMs thus have at least some facility at the three components of CSW: common
sense, math, and language. However, putting these together is a different matter.

3.4. Using an LLM to solve a word problem. There are three major ap-
proaches to using an LLM to solve mathematical word problems. They all take the
problem, possibly supplemented with a prompt as input to the LLM; they differ in
the nature of the output.

The most straightforward approach is simply to ask the LLM to produce the
answer to the problem. This can work well with simple mathematics, though it
breaks down when more complicated math is required.

3.4.1. Translating a word problem into executable code. A second approach is to
have the LLM produce computer code that can then be executed to compute the
answer. Generating code is, in fact, the most successful practical application of
LLMs to date. AI programs like OpenAI’s Codex [7] and GitHub CoPilot [24] are
used by professional programmers as assistants to help write code; some experts
have enthusiastically reported that they save significant time and effort. These
AIs are particularly effective at generating code of standard but nonobvious form,
such as finding the names and arguments to library functions based on a verbal de-
scription; they thus save the programmer a tedious search through documentation.
They are much less reliable in generating programs of significant length of complex
structure.

Drori et al. [14] used Codex to generate Python code that would compute the
answers to a collection of problems drawn from undergraduate math courses at
MIT and Columbia. Their system involved the following steps. First, the problem
was modified by a hand-crafted automated front end into a more standardized
natural language form; generally, this required only adding a few stock phrases
such as “Use sympy”. Second, the modified problem was then input to Codex,
which output Python code. Finally, if the Python code did not give the correct
answer, the system searched for similar examples, with solutions, in the training
data. These were used to create a few-shot prompt, and the problem was attempted
again with the new prompt.

Drori et al. claimed a success rate of 81%; however, for a number of reasons, that
figure is highly misleading [11]. Two successful examples, chosen as illustrations in
[14], are shown in Table 2.

A few points about these examples should be noted. In both examples, the
system ended up altering the original specification: in the first, it did not use the
definition of the derivative; in the second, presumably the author of the problem
did not intend that that simulation should be used. In the first example, Codex
is carrying out an almost trivial transformation from the language expression to a
hand-constructed sympy library function. In the second example, the transforma-
tion from language to code is not at all trivial, but it is safe to say that here, Codex
is closely imitating some code that was in its training set.
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Table 2. Translating word problems into Python code (from [14]).

Question: Find the derivative of the function using the definition of a deriv-
ative.
f(x) = (x**2-1)/(2*x-3).

Input: Using sympy find the derivative of the function using the definition of
a derivative.
f(x) = (x**2-1)/(2*x-3).

Program: import smpy as sp

x = sp.Symbols(’x’)

f = (x**2-1)/(2*x-3)

print(sp.diff(f,x))

Answer: 2*x/(2*x-3)-2*(x**2-1)/(2*x-3)**2

Problem: One generates a number x from a uniform distribution on the
interval [0, θ]. One decides to test H0: θ = 2 against HA: θ �= 2 by rejecting
H0 if x≤0.1or x≥1.9. Compute the probability of a type 1 error.

Input: One generates a number x from a uniform distribution on the interval
[0, θ]. One decides to test H0: θ = 2 against HA: θ �= 2 by rejecting H0 if
x≤0.1or x≥1.9. Using simulation compute the probability of a type 1 error.

Program: import numpy as np

def generate_x(theta)

return np.random.uniform(0,theta)

def test_hypothesis(x)

if x <= 0.1 or x >= 1.9:

return TRUE

else:

return FALSE

def simulate_type_1_error(theta,n)

count = 0

for i in range(n)

x = generate_x(theta)

if test_hypothesis(x):

count += 1

return count / n

print(simulate_type_1_error(2,100000))

Answer: 0.1
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An inherent limitation of this approach is that it carries out the translation in
strict order: It first generates the code, then executes it. Presumably all the nu-
merical calculations are done in the execution part. If so, then the code must work
for all numerical values of the parameters. This can end up turning an easy prob-
lem into a well-nigh impossible one (or even an absolutely impossible one). Many
commonsense problems are easy for some of the numerical parameters involved but
extremely difficult for other values. If the problem is stated with values for which
the problem is easy, then generating the code for the difficult cases is pointless, but
may well be impossible to avoid in this approach. As one example of many, con-
sider the problem of determining whether an object of complex shape fits through
a cylindrical hole. If the object is small enough (e.g., its diameter is less than the
diameter of the cross section of the hole), then trivially, it can fit through. If it is
too large (e.g., it contains a sphere whose diameter is larger than the diameter of
the cross section of the hole) then, trivially, it cannot fit through. Otherwise the
calculation is more difficult, and for tight fits, it can be much more complicated.
Certainly the output code can be written so that, in simple cases, the code for
difficult cases is not executed, but the point is, if the problem at hand is an easy
case, it should not be necessary to even generate the code.

3.4.2. Translating word problems into logical specifications. A third approach to
solving word problems is built around autoformalization, the process of automati-
cally translating mathematical specifications given in natural language into a formal
specification that then can be given to a formal verification system. Wu et al. [31]
used two LLMs, PaLM and Codex, to translate word problems into the formal
notation used by the interactive proof assistant Isabelle. Since the training set
for the LLMs presumably contains only a comparatively small quantity of Isabelle,
they provided long few-shot prompts (different prompts for different areas of math-
ematics) with ten examples. They tested their systems on examples taken from
benchmark collections MATH and MiniF2F, both of which contain mathematical
competition problems. They found that the system created a perfect translation
25% of the time. Problems that require finding a specific value as an answer were
reworded by adding, “The final answer is A” where A is the correct answer at the
end of the natural language formulation. (This is reasonable for testing the ade-
quacy of the translation of α into a formal notation; it would not, of course, be
reasonable for testing the capacity of an AI to solve the problem.) Table 3 shows
two examples of two problems translated into Isabelle.

3.4.3. WolframAlpha. WolframAlpha8 is a manually constructed system with a
wealth of mathematical algorithms and encyclopedic and expert knowledge from
many scientific and sociological fields. It takes input posed in natural language;
however, its natural language abilities are comparatively limited and it has little
commonsense reasoning ability.

At least two systems have been built that use GPT-4 to translate a user query in
to a form that WolframAlpha can accept [13,29].9 Each of these has been tested over
a benchmark collection of math and physics problems across a range of difficulties.
As one would expect, the hybrid systems work very well when the translation from

8https://www.wolframalpha.com/
9This paragraph was entirely rewritten in December 2023, reflecting changes in the state of

the art.

https://www.wolframalpha.com/
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Table 3. Examples of autoformalization from [31]. The trans-
lation in the second example is incorrect, though it is marked in
[31, p. 23] as “correct”.

Question: Natural language version: “When all the girls at Madeline’s school
line up in rows of eight, there are seven left over. If instead they line up in
rows of four, how many are left over? The final answer is 3.” Translate the
natural language version to an Isabelle version

PaLM output: theorem

fixes n::nat

assumes "n mod 8 = 7"

shows "n mod 4 = 3"

Question: Natural language version: “A map of the town that Annie, Bar-
bara, and Charlie live in can be represented by the Cartesian plane. Annie is
located at (6, -20) and Barbara is located at (1, 14). They agree to meet at the
closest point that is equidistant from their current locations and walk upwards
together to get to Charlie’s location at ( 72 , 2). How many units upward do
Annie and Barbara walk together to get to Charlie? The final answer is 5.”
Translate the natural language version to an Isabelle version:

Codex Output: theorem

fixes a b c :: "real \<times> real"

assumes h0 : "a = (6, -20)

and h1 : "b = (1, 14)"

and h2 : "c = (7 / 2, 2)"

shows "dist a c + dist b c = 5"

English to mathematics is straightforward, but on problems where the translation
itself requires significant reasoning, the systems are unreliable (Table 4). Problems
involving spatial reasoning or reasoning about sequences of events were particularly
difficult. There is currently (December 2023) no AI system that works reliably on
problems comparable to Problems 1 and 2 of Section 1.

3.5. Benchmarks. Standard collections of elementary math problems serve as
benchmarks to compare the capacities of different AI systems with one another
and with humans, to measure progress in the technology, and to serve as targets
for research.

Numerous benchmark collections of word problems have been assembled [22],
[25]. The mathematical difficulty ranges from elementary school to International
Mathematical Olympiad and introductory college math courses. The language use
ranges from nonlinguistic to moderately complex. Some require no world knowl-
edge; others requires some combination of commonsense, common, expert, and
encyclopedic knowledge. Question formats include open form question answering,
fill in the blank, multiple choice, and proof construction.

One high-quality collection of 1,000 elementary CSPs is SVAMP (Simple Varia-
tions on Arithmetic Math Problem) dataset [25]. The problems in SVAMP involve
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Table 4. Examples of successes and failures on test set problems,
from [13].

Successes

Problem: A point p is chosen at random within the 100-dimensional box
B = [0, 100]100 following a uniform distribution. What is the probability that
the Euclidean distance from p to the boundary of B is less than 1?

Answer: 1− 0.98100 ≈ 1− 1/e2 = 0.8647

Problem: What is the probability that a randomly-chosen 100 · 100 matrix,
over the finite field F2, is invertible?

Answer:
100∏

i=1

2j − 1

2j
≈ 0.289

Failures

Problem: Viewed from Vega, what is the angle between Sirius and the Sun?

Correct Answer: 0.0972 radians = 5.6◦. GPT4+Wolfram Alpha:
.005060 degrees.

Problem: Joe says that he lives 10 miles from Lake Michigan, that Beth lives
10 miles from Lake Michigan, and that he and Beth live 100 miles apart. Is it
possible that Joe is telling the truth? Answer ‘Yes’ or ‘No’.”

Correct Answer: Yes. GPT4+Wolfram Alpha: No.

only commonsense and common knowledge; the language is simple; the math re-
quired is either one or two arithmetic operations. The numbers involved are positive
integers between 1 and 999. Each example is given in a number of paraphrases and
variants in order to avoid the kinds of artifacts discussed in Section 3.7. Table 5
shows some example problems in SVAMP.

Many of the benchmark collections used to test AI math abilities are taken from
tests developed for human students—math course problems, IQ tests, SAT tests,
Math Olympiad tests, and so on. However, these generally take for granted that
the test-takers have certain basic abilities; this is a safe assumption for humans
but not for AIs, whose abilities are very different [9]. Other benchmarks have been
developed specifically for AIs, but these tend to focus on some abilities and omit
others. Consequently, many categories of problems can go untested.

For example, apparently none of the benchmark sets for mathematical ability
tests an AI’s ability to count. Surely, an AI system that can solve (some) advanced
math problems can count up to six? Not necessarily, as determined in an informal
test (Table 6).10 Likewise, many forms of commonsense mathematical inference
that draw on a basic understanding of time, space, and physical reasoning are not
tested in any existing AI benchmark.

10The technology is rapidly improving; GPT-3.5, released in December 2022, failed on much
simpler examples than those in Table 6.
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Table 5. Examples from SVAMP dataset.

Allan brought two balloons and Jake brought four balloons to the park. How
many balloons did Allan and Jake have in the park?

Allan brought two balloons and Jake brought four balloons to the park. How
many more balloons did Jake have than Allan in the park?

Jack had 142 pencils. Jack gave 31 pencils to Dorothy. How many pencils does
Jack have now?

Dorothy had 142 pencils. Jack gave 31 pencils to Dorothy. How many pencils
does Dorothy have now?

Jack had 142 pencils. Dorothy had 50 pencils. Jack gave 31 pencils to Dorothy.
How many pencils does Jack have now?

Table 6. Some tests carried out by the author on Bing Chat,
powered by GPT-4, May 19, 2023.

User: What is the second letter of the sixth word of the sentence, “Nothing
is told of him but that once, abruptly, he asked a question and received an
answer”?

Bing Chat: The second letter of the sixth word of the sentence, “Nothing
is told of him but that once, abruptly, he asked a question and received an
answer” is “h”.

User: How many words are in the sentence, “Nothing is told of him but that
once, abruptly, he asked a question and received an answer”?

Bing Chat: There are 16 words are in the sentence, “Nothing is told of him
but that once, abruptly, he asked a question and received an answer”.

User: Harry, Ann, Carol, and Ted were playing marbles. Harry had 3 red
marbles and 2 blue marbles. Ann had 1 red marble and a white marble. Ted
had two white marbles and a green marble. Carol had a blue marble and a
green marble. How many marbles were there in total?

Bing Chat: In total there were 11 marbles: Harry had 5 marbles (3 red and
2 blue), Ann had two marbles (1 red and 1 white), Ted has 3 marbles (2 white
and 1 green), and Carol had 2 marbles (1 blue and 1 green).

3.6. General caveat. It cannot be assumed that, because an AI does well on a
class of problems, it can do well on a seemingly easier problem. As we have seen,
the powerful AI GPT-4, which does reasonably well on various simple math tasks,
cannot reliably count to six.

Likewise, it cannot be assumed that an AI that can carry out each component of
a given task separately can carry them out when they are combined. For example,
LLMs in general do much worse on problems that involve two arithmetic operations
than those that require one, both in word problems and in purely mathematical
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problems. As remarked above, in the proof of Fermat’s little theorem, GPT-4 both
asserted that p divides p− 1 and confused the statement ap−1 = 2 mod p with the
statement ap−1 = 1 mod p; it would not make either of these mistakes in isolation.
The capacities and incapacities of these kinds of programs do not at all resemble
those of human beings.

3.7. Artifacts. A persistent problem in ML, in all its applications, is that the
patterns that the AI finds do not actually reflect the fundamental characteristics
of the problem, but rather superficial regularities in the training data, known as
“artifacts”. For example, AIs trained over corpora of medical images have “learned”
to associate diagnoses with features of the different imaging devices used at different
hospitals rather than the actual content of the image. Artifacts are particularly
likely to arise if a large data corpus is partitioned into a training set (used to train
the ML system) and a test set (used to evaluate it); any superficial regularity in the
corpus as a whole can be learned from the training set and then applied to the test
set. In general, avoiding artifacts in AI systems demands great care in constructing
corpora and carrying out tests.

These kinds of problems have, in fact, arisen in AI for math word problems. For
example, in one experiment [25], an AI trained on the benchmark ASDiv-A seems
to have learned11 that if the word “every” appears in a problem, it should multiply
the two numbers involved, whereas if the word “each” appears, it should divide
them. The AI therefore got the right answer on questions like “John delivered 3
letters at every house. If he delivered for 8 houses, how many letters did John
deliver?” and “Sam made 8 dollars mowing lawns over the summer. He charged
2 bucks for each lawn. How many lawns did he mow?”, but the wrong answer on
questions like “John delivered 3 letters at every house. He delivered 24 letters in
all. How many houses did John visit to deliver letters?” and “Sam mowed 4 lawns
over the summer. If he charged 2 bucks for each lawn, how much did he earn?”
Apparently, problems conforming to the rule were more common in the dataset
than those violating the rule. Thus, if an AI is trained on a training set collected
from this corpus, and then tested on a separate group of problems from the same
corpus, it may well be able to use these kinds of regularities to achieve a fairly high
success rate without at all understanding the actual meaning of the problem or its
relation to the mathematical operations.

4. Relevance to mathematical activities

As we have seen, current AI technology has serious limitations in its ability to
engage with even very simple real-world mathematical problems posed in natural
language. However, it is far from clear how relevant those limitations to an AI’s
ability to do advanced mathematics. One might naturally suppose that a tech-
nology that cannot reliably count up to six is not about to have much impact on
groundbreaking mathematical research, but that is not a safe assumption.

I doubt, for instance, that the limitations discussed here are very relevant to
the prospects of building AIs that can construct formal proof of statements in
pure mathematics given formal specifications. Human mathematicians may well
draw on their commonsense knowledge in understanding advanced mathematics

11AI systems that used “deep learning” and similar learning techniques are opaque; character-
izing what they have learned in terms of these kinds of rules is always approximate and relies on
indirect evidence.
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and searching for proofs, though the degree to which they do this is unknown. (It
probably varies widely across individuals.) But that does not at all imply that AIs
would need to do likewise. The best chess-playing programs cannot recognize and
name concepts like a “fork” or a piece being “pinned” in chess, and cannot read
and discuss an article in a chess journal, but nonetheless they play very good chess.

However, there are important aspects of mathematical practice where I expect
that these limitations will be important. One is applications of many kinds. The
mathematization of real-world domains and tasks generally conceals the common-
sense reasoning involved and gives the illusion of a rigorously formal process, but it
does not actually eliminate the need for commonsense understanding. This is true
even in physics, at least on the experimental side. Understanding how the LIGO
gravitational wave detector works involves a commonsense understanding of the
components in addition to a lot of technical understanding; you cannot prove the
correctness of the experimental device from first principles. In areas such as biology,
medicine, cognitive science, as well as the social sciences, commonsense reasoning is
even more unavoidable. Understanding which parts of a mathematical model cor-
respond to reality and which are mathematical simplifications, and, consequently,
which inferences from the model may be valid and which are artifacts of the model
is hardly possible without a commonsense understanding of the situation.

Mathematical informal exposition for a nonexpert audience often draws on com-
monsense reasoning. Looking through some recent mathematical articles in Quanta
Magazine: An article on Ramsey numbers [28] uses parties, buckets, and bound
books as analogies. An article on tilings [17] includes numerous pictures of tilings
and calls on the reader’s intuitive understanding of how these can or cannot be
extended to infinity and are or are not invariant under certain kinds of translation.
An article on knot theory [27] unsurprisingly draws on intuitions about physical
loops and surfaces. An article on nontransitive dice [18] calls on the reader’s ex-
perience playing “rock-paper-scissors”. Certainly, these are not representative of
mathematical research broadly; they have been chosen for articles in Quanta in part
precisely because they connect with a reader’s general understanding. Nonetheless,
they indicate that connections between commonsense understanding and at least
some aspects of mathematical research persist.

Likewise, teaching mathematics, particularly at elementary levels, is often most
effective if the instructor can connect the theory being taught to the students’
understanding of the real world.

I would also conjecture—with much less confidence—that the limitations dis-
cussed here would raise challenges to building an AI that can read and understand
(human-written) mathematical articles. I do not know of any systematic analysis of
the cognitive processes required to read an extended proof, but it seems likely that
they draw significantly on basic commonsense understanding. Again, no doubt it
varies by field and by proof style. It seems likely that proofs that draw strongly on
one’s visual sense and spatial, such as (at the elementary level) those in [23] or the
beautiful proof of Fermat’s little theorem in [15] will be particularly difficult. Writ-
ing mathematical proofs that are human readers find intelligible and well written
may well be easier than reading them; it is often found, in AI, that generation is
easier than comprehension.
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Advancing mathematics by guiding human intuition with AI, Nature 600, no. 7887 (2021),
70–74.

[9] E. Davis, Using human skills taxonomies and tests as measures of AI, In Stuart Elliott (ed.)
AI and the Future of Skills, Volume 1: Capabilities and Assessments, OECD Publishing, 2021.

[10] E. Davis, Deep learning and mathematical intuition: A review of (Davies et al. 2021),
Preprint, arXiv:2112.04324, (2021).

[11] E. Davis, Limits of an AI program for solving college math problems, Preprint,
arXiv:2208.06906, (2021).

[12] Ernest Davis, Logical formalizations of commonsense reasoning: a survey, J. Artificial Intel-
ligence Res. 59 (2017), 651–723, DOI 10.1613/jair.5339. MR3703243

[13] E. Davis and S. Aaronson, Testing GPT-4 with WolframAlpha and Code Interpreter plug-ins
on math and science problems, Preprint, arXiv:2308.05713, (2023).

[14] I. Drori et al., A neural network solves, explains, and generates university math problems
by program synthesis and few-shot learning at human level, Proceedings of the National
Academy of Sciences (PNAS) 119 (2021) No. 32, p.e2123433119. https://doi.org/10.1073/

pnas.2123433119

[15] Jordan S. Ellenberg, Geometry, inference, complexity, and democracy, Bull. Amer. Math.
Soc. (N.S.) 58 (2021), no. 1, 57–77, DOI 10.1090/bull/1708. MR4188808

[16] A. Gillioz, J. Casas, E. Mugellini, and O. A. Khaled, Overview of the Transformer-based Mod-
els for NLP Tasks, In 2020 15th Conference on Computer Science and Information Systems
(FedCSIS), pp. 179–183. IEEE, (2020). https://ieeexplore.ieee.org/abstract/document/
9222960

[17] P. Honner, Patterns that go on forever but never repeat, Quanta Magazine,
May 23, 2023. https://www.quantamagazine.org/math-that-goes-on-forever-but-never-
repeats-20230523/

[18] E. Klarreich, Mathematicians roll dice and get rock-paper-scissors, Quanta Magazine,
January 19, 2023. https://www.quantamagazine.org/mathematicians-roll-dice-and-get-
rock-paper-scissors-20230119/

[19] D. B. Lenat, M. Prakash, and M. Shepherd, CYC: Using common sense knowledge to over-
come brittleness and knowledge acquisition bottlenecks, AI Magazine 6 (1985) no. 4, 65–65.

https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2311.15930
https://arxiv.org/abs/2108.07258
https://mathscinet.ams.org/mathscinet-getitem?mr=4522672
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2112.04324
https://arxiv.org/abs/2208.06906
https://mathscinet.ams.org/mathscinet-getitem?mr=3703243
https://arxiv.org/abs/2308.05713
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1073/pnas.2123433119
https://mathscinet.ams.org/mathscinet-getitem?mr=4188808
https://ieeexplore.ieee.org/abstract/document/9222960
https://ieeexplore.ieee.org/abstract/document/9222960
https://www.quantamagazine.org/math-that-goes-on-forever-but-never-repeats-20230523/
https://www.quantamagazine.org/math-that-goes-on-forever-but-never-repeats-20230523/
https://www.quantamagazine.org/mathematicians-roll-dice-and-get-rock-paper-scissors-20230119/
https://www.quantamagazine.org/mathematicians-roll-dice-and-get-rock-paper-scissors-20230119/


MATHEMATICS, WORD PROBLEMS, COMMON SENSE, AND AI 17

[20] J. Meadows and A. Freitas, Introduction to mathematical language processing: Informal
proofs, word problems, and supporting tasks, Trans. Assoc. Computational Linguistics. 11
2023 1162–1184. https://doi.org/10.1162/tacl_a_00594.

[21] S. Miao, C. C. Liang, and K. Y. Su, A diverse corpus for evaluating and developing English
math word problem solvers, Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, 975–984, https://doi.org/10.18653/v1/2020.acl-main.
92

[22] S. Mishra, M. Finlayson, P. Lu, L. Tang, S. Welleck, C. Baral, T. Rajpurohit et al., L̄ila: A
unified benchmark for mathematical reasoning, Preprint, arXiv:2210.17517, (2022).

[23] R. B. Nelsen, Proofs Without Words: Exercises in Visual Thinking. Mathematical Association
of America, (1993).

[24] N. Nguyen and S. Nadi, An empirical evaluation of GitHub copilot’s code suggestions, Pro-
ceedings of the 19th International Conference on Mining Software Repositories, 2022, 1–5.

[25] A. Patel, S. Bhattamishra, and N. Goyal, Are NLP models really able to solve simple math
word problems? Preprint, arXiv:2103.07191, (2021).

[26] J. Qian, H. Wang, Z. Li, S. Li, and X. Yan, Limitations of language models in arithmetic
and symbolic induction, Preprint, arXiv:2208.05051, (2022).

[27] L. Sloman, Mathematicians Eliminate Long-Standing Threat to Knot Conjecture, Quanta
Magazine, February 2, 2023.

[28] L. Sloman, A very big small leap forward in graph theory, Quanta Magazine, May
2, 2023. https://www.quantamagazine.org/after-nearly-a-century-a-new-limit-for-

patterns-in-graphs-20230502/

[29] X. Wang, Z. Hu, P. Lu, Y. Zhu, J. Zhang, S. Subramaniam, A. R. Loomba, S. Zhang, Y. Sun,
and W. Wang, SciBench: Evaluating college-level scientific problem-solving abilities of large
language models, Preprint, arXiv:2307.10635, (2023).

[30] S. Wolfram, ChatGPT gets its ‘Wolfram Superpowers!’, (2023). https://writings.

stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/

[31] Y. Wu, A. Q. Jiang, W. Li, M. N. Rabe, C. Staats, M. Jamnik, and C. Szegedy, Autoformal-
ization with large language models, Preprint, arXiv:2205.12615, (2022).

Department of Computer Science, New York University, New York, New York 10012

Email address: davise@cs.nyu.edu

https://doi.org/10.1162/tacl_a_00594
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://arxiv.org/abs/2210.17517
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2208.05051
https://www.quantamagazine.org/after-nearly-a-century-a-new-limit-for-patterns-in-graphs-20230502/
https://www.quantamagazine.org/after-nearly-a-century-a-new-limit-for-patterns-in-graphs-20230502/
https://arxiv.org/abs/2307.10635
https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/
https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/
https://arxiv.org/abs/2205.12615

	1. Introduction
	2. Math word problems and world knowledge
	3. Artificial intelligence for word problems
	3.1. Large language models
	3.2. A fallacious proof generated by GPT-4
	3.3. LLMs’ abilities at common sense, math, and language
	3.4. Using an LLM to solve a word problem
	3.5. Benchmarks
	3.6. General caveat
	3.7. Artifacts

	4. Relevance to mathematical activities
	Acknowledgment
	References

