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ON A GENERAL FORMULA FOR THE EXPANSION 
OF FUNCTIONS IN SERIES.* 

BY PROF. W. H. ECHOLS. 

1. If O be the symbol which represents any operation per
formed on a function, and Or the repetition of that operation 
r times, then the formula inferred to above is 

fx fx . . . 
flfl fjfl • • • 

fyP fjSp • • • 
Ofxx Ofxx . . . 

0*fxq 0*fxxq . . 

fnX 

f*Hx 

fni/p 
Ofnxx 

0%xq 

0 

fit -f lX 

fn + lVi , 

fn + lVp 

Q/n + 1»» 

1 J 
in which all elements of the last row except the first and last 
&re zero. The symbol OfXi means that after the rth opera
tion on fx, the argument is changed into xt. $(u) represents, 
in general, some function of x, yx, . . ., yp, xx, . . .,xq, 
involving also the form of the functions in the determinant. 

If now the operation O be such that the $ function may 
be so determined that the above determinant vanishes, we 
have, regarding x as the variable, the formulas 

jx = A xjxx • + - • • • - ( - An _|_ ! fn + xx, 

fx = Bxfyx + . . . + BJyp 

+ OxOfxx + . . . + CqO*fxq + D$(n). 

The first of these may be regarded as an expansion of fx 
according to the functions fx, . . . ƒ„ + xx, whose coefficients 
are independent of the argument x, save in so far as 0 is a 
function of x. The second, in turn, may be regarded as an 
expansion of fx according to the form fyr and the successive 
operatives of fx, whose coefficients are independent of the 
form of the function fx ; the residual term being D<P(u), 
wherein D does not depend on the form of the function fx. 

* Read before the New York Mathematical Society, January 7, 
1893. This paper is intended to be a brief exposition of the general 
theorem which is the basis of a series of papers entitled ' On Certain 
Determinant Forms and their Applications," now in course of publica
tion in the Annals of Mathematics, 
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We proceed to examine particular cases of (1) wherein the 
determinant may he either that of Interpolation, Differentia
tion, or Differences. 

INTEBPOLATION. 
2. In (1), if q = 0, then each row, except the last, is ob* 

tained by specifying the variable in the first row, and we have, 
for the general formula of interpolation, 

(2) 

fx, ƒ , * . . . 
A , ƒ,*, • • • 

f%n> J\%n • • • 

&(u)9 0 . . . 

1 ƒ% f?u . . . 
1 fxi> fixi • • • 

J f * » , f&n . . . 

JnX\ > 

fn + 

fn + î 

Jn&n 9 ƒ » -f-1 

fnnU 

fnXx 

fn%n 

• 

Xu 

l 

= 0, 

ƒ xXn . • 

• / n + lW 

• fn+l%n 

wherein 

0{u) = 

in which f?u means that frx is to be differentiated n timet 
with respect to x and in the result x changed into u, which it* 
some unknown quantity lying in value between the greatest 
and least values of the quantities x, xx>. . . , xn. 

The proof follows: 
Let M be the minor of $(u), and iVbe the minor of the 

element 1 in (2), and put 

R being some unknown function of x. 
Let us now assign to x some arbitrary constant value xQt so 

that this equality becomes 

JV0 = ( - i)»ifA» 
which is independent of x. 

Consider the function 

F=z ]Sr+(-l)n + 1MR0. 

This function vanishes when x = xQ and also when x is equal 
to any one of the n quantities xx,. . . , xn. By Rolle's 
theorem, therefore, the first derivative of F must vanish for n 
values of x such as ux,. . . , un, which lie respectively between 
the values x0xx, xxx9, • In like manner the 
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second derivative of F vanishes for n — 1 values of x which 
lie respectively between the values t ^ w , , ^ « , , . . . w » - ^ « ; 
and so on, until finally the nth derivative of i^must vanish 
for some value, u, of x, which lies between the greatest and 
the least of the quantities xQ, xx, . . . , xn, and we have 

Fun = Nun + ( _ i)» + iJfM»Ä# = 0. 

Since OJ0 is arbitrary, we may drop the subscript, and write 

B = ( - I)*NS/MS, 

= $(u). 
Whence 

^ + ( - l ) n + 1*(«)^=0, 
which demonstrates (2). 

As we shall require, in the sequel, the result of the follow
ing, we proceed to give a particular illustration : 

jetfrX = x*"1, then 

and we have 

fx, 1, a? 

/ a n , 1, «„ 

/"<*> o, o 
n\ 

a n - 1 y n 

0, 1 

= 0. (3) 

Expanding this with respect to the first column, we ob
tain 

fx = AJax + AJaQ + . . . + Anfan + ^n + i ~ J p , 

wherein 

^ r ~ ( l j < ? ( « , , . . . , a.) ' 

_ (a? — a,) . . . (a? — ar i)(x — ar + 1) . . . (a: — aw) 
(«r — a,) . . . (ar — ar„ x)(ar — ar+1) . . . {ar — «n)

# 

This is Lagrange's interpolation formula. 
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Let the values of the argument be equidistant with incre
ment A, x being the greatest so that x — ar = rhy then we 
have (E being the symbol of enlargement) 

(-)•**ƒWW = ƒ* - C W * + . 
+ (-) «Efx. 

Cnr representing the binomial coefficient, and Erfx=zf(x—rh). 
The member on the right of this equality is the well-known 
expression for the nth difference of fx, so we have 

4nfx = h«f»(u), (4) 

wherein u lies between x and x — nh. If n = 1, then 

/I*+ *)-ƒ* = */(«), 
Lagrange's well-known form of Rolle's theorem. We may 
therefore consider (4) to be a generalization of this formula. 

DIFFERENTIATION. 

3. If in (1) the operation O be identical with the operation 
of Differentiation, we have for the corresponding general 
formula 

/ n ^ fn + l® 

fVp> fxVp • • • UVP> /n+t%> 
f*x> fx% • • • fn'^tf'n + l^ 

0, 1 

=s0. (5) 

In which, as before, u is an unknown value of x lying 
between the greatest and least of the quantities x, yx, . . ., 
yp, a?,, . . . , xq. The bottom element of each column 
except the first and last is zero, and* 

* In point of fact we should in the general form (5) write 

d\n=p+Q 

*«>=<c: 

ƒ* fnJX 

f*Vx 

ƒ % > . . . fr&P 

fxx . . . ƒn»t 

. fn*Xq 

id V**P+Q 

fxX 

fn+Wi 

fiVp . . . fn+lVp] 

/x'aJi . . . fn+&i 

l/i^a J^n+l»( 

because F vanishes p+1 times f or x =s a?0, Vi > . . •, Vp > therefore its 
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/ , + 1 w . . 
fy, • • 

fy» • • 
f% • -

fizq . . 

• M+ltt 
• Uyx 

jnyP 

Jn #, 

• ƒ»% 

-T-

/V + 1« . . 
ƒ.#. • • 

ƒ.&> • • 
A% • • 

ƒ .% • • 

. / » + i a + , w ! 

• fn+iy, 

• fn + iyp 
• /n+ft 

• A+i*« 1 

The proof follows : 
Let Jf and N be the minors of #(w) and 1, respectively, in 

(5), and put 

R being some unknown function of x. Assigning to x some 
arbitrary constant value x0, we have 

jv0 = ( - i ) * i f A . 

Consider the function 

F vanishes when x takes any one of the values xQ, yx, . . ., 
yp. Therefore, by the above, its derivative must vanish for 
some value of x, say u0, which lies between the greatest and 
least of these values. This derivative vanishing also for 
x = xx, then must the second derivative vanish for some 
value ux, which lies between tcQ and xx ; which, in turn, 
vanishes again for x = x2. Continuing thus, we find that the 
(q -f- l)th derivative of F vanishes for some value, n, of x 
lying between the limits prescribed above. Therefore 

x0 being arbitrary, we may strike off the subscript and put 

= *(«). 
Whence 

]\T+(-l)n + 1$(u)M=zO, 
which is (5). 

first derivative vanishes p times between these values and also once 
more when x — xi, and so on, until we find its qth derivative vanishing 
p -f-1 times among the values #0, y\, . . . , Vp , #i » . . . , xq% so that 
the(g + jo)th or nth derivative must vanish once among them. The 
same thing would apply to the general formula for differences, etc. 
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The most interesting case of this general formula is when. 
p = 1. I t may then be written 

fx, 1 , <f>xx, 

fy> h 0,y, 
fax, 0, <px'ax, 

., <pnx, <pn + iX 

• > <pny> <Pn+iy 

fnan, 0, <px
nan, 

${u), 0, 0, 0, 1 

= 0. (6) 

I have for want of a better name called the general form a 
composite, and the minor of fx is designated by the term 
body-determinant, or simply the body of the composite, in as 
much as it is got by striking out the outside rows and columns 
of the composite. 

There are two classes of 0 functions in (6) which require 
classification. The first class includes all of those functions 
which yield a body such that all elements on one side of its 
diagonal vanish, either through the operation of differentia
tion alone or through proper selection of the arbitrary con
stants. This class may be subdivided according as the 
elements above or below the diagonal vanish.* The second 
class includes those cases in which the elements on neither side 
of the body diagonal all vanish, the most interesting case 
of this class being that in which the body is a difference-
product. 

The first class yields readily all the well-known series, 
such as those of Taylor, Maclaurin, Bernouilli, Lagrange, 
Laplace, Abel, and a large number of other general series. 
The second class yields Fourier's theorem, and important gen
eral series in sines, cosines, Bessel's functions and logarithmic 
forms. A large number of these forms I have deduced in 
detail in the Aimais of Mathematics, VI., 5 ; VII., 1, etc., with 
the object in view of illustrating the application of the com
posite to the deduction of special forms. 

DIFFERENCES. 

4. After demonstrating the general formula for interpola
tion we took notice ot a special case for the purpose of deduc
ing (4), the generalization of Lagrange's form of Eolle's 
theorem, because that theorem will now be needed for the 
establishment of the corresponding general formula for Finite 
Differences, which is, in the form corresponding to (6), as 
follows : 

* The first division of this class is Wronski's expansion, 
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fx, 1, <f>xX . . . <pnX, <pn + iX 

fy, h <>$--. <l>ny> <t>n + xlj 
Afxx9 0, A<f>xxx . . . A<pnxx, A<pn+1xx 

A*fxn, 0, An<f>xxn . . • An<pnxn, An<pn + 1xn 

#(«)> o, o . . . o, i 

= 0. (7) 

The proof follows : 
Using My Ny and R in the same sense as before, we consider 

the function 

F = 0 when x = x0 and also when x = y ; therefore its first 
derivative i77' vanishes for some value of x which lies between 
#0 and y, say w0. Now when x = xx, then J J P = 0 ; hence, 
if the scale of difference be A, in virtue of (4) 

AF=hF'(n) 

(u iying between x and x + A), we have JF' = 0 for some 
value of x between xx and xx + A, say a, + hx. Since F'=0 
for w0 and a, + hx, then must i^" = 0 for some value of x, 
say Mj, between u0 and â  + A,. 

Again, since by (5) we have 

A%Fx = A 2 . F ' » 

(w between x and a; + 2A), and since A*Fx = 0 when x = a;,, 
then must F"=Q for some value of # between #a and #a -f- 2A, 
say #a + Aa. .F" vanishing for a; = w, and x = #3 + A„, then 
must JP'" = 0 for some value of x, say u%, which lies between 
these values. 

Reasoning in the same way, we proceed until finally we 
show that the (n + l) th derivative of F must vanish for some 
value u, of x, which lies between the greatest and the least of 
the quantities x0, y, xx + A, . . . , xn -f- nil, so that we have 

J^H + 1 = JSTun + l + ( _ l)n MJfu» + l ^ = 0. 

Dropping the suffix as before, we obtain 

JST + (- l)n + 1$(u)3f = 0, 

which is (7). 
Interesting forms of (7) are of course the general expan

sions in factorials, a number of which I have deduced, in
cluding as special cases the generalized forms of Taylor's and 
Maclaurin's series. 
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5. All expressions in the form of series which are deduced 
from the general composite are to be considered as having a 
finite number of terms and a terminal term R. These 
formulae are not to be imagined as extending to infinity 
until it has been demonstrated that R becomes evanescent 
when n is infinite, and the coefficients in the series at 
the same time take on finite form. In general, it will be 
required of the functions in the composite, that they be 
finite, continuous, and single-valued between the values of 
the argument indicated, as also their successive operations. 
Under these circumstances when the member on the right 
converges to fx, on the left, as a limit when n becomes in
finitely large, the result may be relied upon as arithmetically 
intelligible and true, the residual term R furnishing the 
evidence as to what values of the variable may be used in the 
equality. When we have determined the forms of the coef
ficients in the series, we have definitely determined the true 
analytical forms which these series must have if the expansion 
be possible, that is to say, we may regard the qualitative 
analysis as having been effected for these formulae. The 
quantitative analysis remains yet to be done, that is the 
investigation of R, which determines the existence of the 
converging infinite series and the limits between which the 
variable can lie. The terminal term R is a function of an 
absolutely unknowable value of x, which can only be elimi
nated in the limit by showing that R vanishes when n is 
infinite. 

The rationale illustrating the application of the composite 
to the expression of functions in infinite series may be pre
sented thus : 

Let there be two functions fx and 
n - 1 

2Ar(prx = A0 + Ax(pxx + . . . + An _ x0n _ xx. 
0 

Let the difference between these two functions be R, so that 

fx = A, + Al(f>lx + . . . + A - i 0 n - i ® + A (8) 
Let ax, . . . , an be certain arbitrary values of the variable x9 
and let us have 

fa, = A0 + Axcf>xax + . . . + An -10« -1«, + Ä, ) 
\. (9) 

fan = A0 + Ax(f>xan + . . . + An _ x 0 n . tan + Rn ) 

In these n relations (9) there are n undetermined arbitrary 
quantities A0> Alf . . . , An _ 1# Let us determine these so 
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that we shall have Rx = J?2 = . . . = Rn = 0. Thus, the 
value of Ar which satisfies this condition is, 

^ r = ( - ! ) ' 

\fai9 1, 4>flx . . . 0 r - l ^ , 0r + l«i 

)/ffn, 1, 0,«n . - . 0 r - l « n , 0 r + l« 

1, 0 ia i . . . 0n- «, 

1, 0,an . . . 0»-!«» 

. . . 0» - 1«, 1 

n . . • 0n —l̂ nj 

Consider the ^t coefficients to have these values. Taking 
now the n + 1 relations (1) and (2), we have for the value 
of R, 

ƒ 

\J 

%X, 1 , <f)xX . 

a t , 1, 0 la1 . 

irn, 1, 0,an . 
1, 0,«, . . . 

1 , <f>xaH . . . 

. . 0 n - l 

• - 0 n - l 

• . 0 n - l 

0n - 1«! 

0n - i«n 

«J 
«MJ 

Ä. 

We observe that the expansion of the determinant in the 
numerator of this ratio, according to its first row, gives the 
coefficient of 0 ^ the value of Ar as determined above. We 
observe that this ratio for R takes the indeterminate form 
0/0, when the a's approach a limiting fixed value a. In 
order to evaluate the limiting value of this ratio as the a's 
approach the limit a, we apply to the numerator and denom
inator the operator 

(A.)' . . . (AY1"1 , 
obtaining 

1 fx 1 0 ^ . . . 0 
fa 1 0,0 . . . 0 

fa 0 0 > . . . 0', 

i - i # 

| / " - % 0 0 l»- 'a . . . 0n-*1
n_1a 

0/« • • • 0'n-l« 

0 l
w- ,a . . . 0^ -^ -1« 

Ä. (10) 
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It is to be distinctly observed that in this process we do not 
TO — 1 

require the functions ƒ# and ^Ar<p^ to have a contact of the 
0 

(n — l) th order at x = a in order that we may equate their 
first n — 1 derivatives when x = a. What we require is 
merely that the functions fx and qy^x (r = 1 . . . n — 1) shall 
each have a determinate derivative at x =• a, up to the 

» ~ i 
(n — l ) th operation. Of course, if fx and 2Ar<p,x have an 

o 
(n — l)th contact at x = a, then our value for R holds true 
as well ;.but it is not dependent on such a relation: it simply 
includes it. 

If now the successive functions <prx (r = 1 . . . n) may be 
formed in succession indefinitely according to a given law so 
that we may make r m 0 ^ as great as we choose, then if it 
can be shown that R has for its limit zero, as r becomes 
infinite and at the same time the ^ ' s have limiting values 

00 

such that 2Ar<f>rX is a converging* series, then we may write 

fx = AQ + Ax4>xx + A^x + . . . ad. inf. 

The value of R has been shown to be 
II, <p\X . . . <pnX\ 

|1, (Pia . . . <t>na\ 
i 

;0, <pi'a . . . <t>nO>\ 

iO, 0xn-la\ . . \f)nn-la\ 

fx, 1, 0iX 

fa, 1, (pxa 

fa, 0, <px'a 

f*-la, 0, (pin~la 

| <p\'a . . . <t>n-i'a\ 

\0in"la . . . <£n-iw~,a df\w 

«3=tt 

1, <piX . 

1, 01« . 

0, <pi'a . 

0, <pin~la . 

0n- l» 
0u - i ' a 

. 0 t t-!»-!«• 

0u»| 
<pna 

0n'a| 

0aw-1«! 

(ID 

in which w is some unknown value of # lying between # and 
a. 

ON THE EARLY HISTORY OF THE NON-
EUCLIDIAN GEOMETRY. 

BY EMORY McCLINTOCK, LL.D. 

IT has until recently been supposed that the earliest work 
on non-euclidian geometry was Lobatschewsky's.* A much 
earlier production (1733) has been brought into notice by 

* See BULLETIN of November, 1892, vol. n, No. 2, "On the Nou« 
Euclidian Geometry." 


