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TRANSCENDENTAL NUMBERS. 

An authorized translation by Professor W. W. BEMAN of Chapter XXV. 
of Vol. IL, of the Lehrbuch der Algebra* 

BY PROFESSOR HEINRICH WEBER. 

[Professor Weber's presentation of the recent methods of demonstrating 
the transcendency of e and TT, especially in sections 205 and 206, is so 
elementary that its reproduction in English will be welcomed by many. 
For the sake of completeness the whole chapter has been given. W. W. B. ] 

§ 203. 
Enumerable Masses. 

In the introduction to our work the general number con
cept was defined and with this general number concept we 
have operated, e. g., in the proof of the existence of a root. 
In the further course of our investigations, we have dealt 
only with algebraie numbers without stopping to inquire 
whether the content of the number domain was thus ex
hausted, or there were non-algebraic numbers besides. The 
existence of non-algebraic numbers, also called transcen
dental, was first demonstrated by Liouville. Other proofs 
have been devised by G. Cantor, f 

We begin here with the conception, already estab
lished in the introduction, of a mass or manifoldness, 
which means a system of elements of any kind so far de
fined that in case of any arbitrary object it is possible to de
cide whether it belongs to the system or not. 

We distinguish between finite and infinite masses and 
introduce as our first and most important example of an 
infinite mass the aggregate of the natural numbers 1 , 2 , 3 , . . . 
The following definition then holds : 

1. Definition, A mass is said to be enumerable [abzahlbar] 
when its elements can be brought into a (1,1) correspondence with 
the whole series of natural numbers or a portion of the same.% 

Accordingly every finite mass is enumerable and in the 
enumeration the series of natural numbers is used only up 
to a certain greatest number. In what follows we specially 
consider infinite masses. 

* Braunschweig, Vieweg und Sohn, 1895 und 1896. 
fG. CANTOR, CrelWs Journal, vol. 77 (1873). "Ueber eine Eigen

schaft des Inbegriffes aller reellen algebraischen Zahlen." 
X CANTOR, I. c. The notion of enumerable masses agrees with the notion 

of simply infinite systems defined by DEDEKIND without the assumption of 
the number system. DEDEKIND, * ' Was sind und was sollen die Zahlen ? " 
§ 6. Braunschweig, 1887. (Second unaltered edition, 1893.) 
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We may also define an infinite enumerable mass as a mass 
of such a nature that to every element a definite number 
from the series of natural numbers can be applied as a name, 
provided every number of the series of natural numbers is 
employed ; that is, a mass in which there is a first, second, 
third, . . . hundredth . . . element. 

Finally, we may also say that an infinite enumerable mass 
is one whose elements can be arranged in such an order 
that there is a first element, that each element is followed 
by a definite other one of the mass, and that every element save 
the first is preceded by a definite other element. Such a series 
we may call a countable [zâhlbar] arrangement. I t is 
clear that an enumerable mass is enumerable not only in one 
way, but in infinitely many different ways. 

Besides the series of natural numbers which is manifestly 
enumerable, we may mention as a second example the system 
of rational positive proper fractions which may be enumer
ated, for instance, in the following manner: 

1 1 2 1 3 1 2 3 4 1 5 

2' r r rrr r ? ? r e"" 
i.e., so that every greater denominator follows the less 
denominator, and that the fractions with equal denominators 
are arranged according to the magnitude of the numera
tors. If, however, the fractions were to be arranged in or
der of numerical value, we should not have a countable ar
rangement. 

2. The aggregate of all algebraic numbers is an enumerable mass. 
To prove this important theorem we recall that every al

gebraic number 0 is the root of one and only one irreduci
ble equation 
(1) f(0) = ao0

n + a,0^+ . . . + a w = 0 
where a01 av . . . an are integral rational numbers without a 
common divisor, and a0 is positive and different from zero. 
The degree n of the equation (1) is a positive integer and 
hence at least equal to 1. Some of the numbers av a2,.. . an_1 
may be 0. 

We will now select the signs ± so that =b av db a2,. . . ± an 
are not negative, and call the sum 

(2) J = ( t t - l ) + a 0 ± a 1 ± a 2 , . , ± a n 

the height of the algebraic number 0. The height is then al
ways a> positive integer. 

Now it is easy to see that for a given value of the height 
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N there is always only a finite number of algebraic num
bers. For in the first place by (2) n can never be greater than 
JSf,and for given values of Nand n the numbers ava2,. . .an 
can be determined in only a finite number of ways. Among 
the functions f(@) so determined we retain only the irre
ducible ones. If now the algebraic numbers be arranged so 
that the numbers of less height precede those of greater 
height, that among numbers of equal height that one pre
cedes whose real part is the smaller, that among numbers 
of equal height and equal real part the one of smaller 
imaginary part precedes, we have a countable arrangement 
of the algebraic numbers and it is shown that the aggregate 
of all algebraic numbers is an enumerable mass. 

We have, for example: 

j \ r = 1, n = 1, a0 = 1, ax = 0, 
JV=2 , n=l, a0=l, ^ = ± 1 , 
J V = 3 , n=l, a 0 = l , ^ = ± 2 , 

% = 2> <*!==*= 1, 
n = 2, a0 = 1, a, = 0, a2 = 1, 

and the beginning of an orderly series of algebraic num
bers becomes 

o , - 1 , + 1 , - 2, - 1 , - s ^ T Î ; S/=T, \ , 2 , . . . 

Every portion of the series of natural numbers is an enu
merable mass : for we have only to arrange the numbers of 
such portion in order of magnitude to obtain a countable ar
rangement. 

Thus it appears that every portion of an enumerable 
mass is itself an enumerable mass. Hence it follows among 
other things that the mass of real algebraic numbers is 
enumerable. 

§ 204. 
Unenumerable Masses. 

We now proceed to the proof of the theorem that there 
are number masses which are not enumerable and in parti
cular we shall show that : 

The aggregate of all real numbers even when we are restricted to 
a finite interval is not enumerable. 

For this purpose consider any enumerable mass of unequal 
real numbers which in a countable arrangement (£) may 
be designated: 
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( 0 ) a>v <*>» " , , * > „ . . . 

(where it is to be observed that the elements may not be 
arranged in order of magnitude). 

For brevity we shall speak of that one of two elements of 
the series & which has the smaller index as the earlier, the 
one with greater index as the later. 

We now select any two real numbers a and /2, a < p9 and 
show that in the interval £ = («, y9) there is at least one 
number not found in the series &. As soon as we have 
shown the existence of one such number for every interval, 
there must be infinitely many, since we can apply the same 
argument to every portion of the interval (a, /5). 

First, it is clear that our proposition is correct if only a 
finite number of numbers of the series £ is contained in any 
finite portion of the interval d} and we may, therefore, pass 
immediately to the case where an infinite mass of numbers 
of the series & lies in every part, no matter how small, of 
the interval d. 

Designate by av px the two earliest numbers of the series &, 
which lie in the interval 5, assume ax< Px and put ^—z^—av 
so that ^1=(«1, £j) is a portion of the interval d. 

Now designate similarly by a2, /?2 the two earliest num
bers of the series & which lie within the interval <?, (exclu
sive of the limits), assume «2</?2 and put ^2=/32 — a2. 

We can proceed in this way and obtain an unlimited 
series of intervals 

each of which includes all that follow, and two series of 
numbers : 

«, av a2, . . . , 

all of which, with the possible exception of the first a, j3, 
belong to the series &. The numbers «, av a2,.. . , form an 
increasing series, the numbers /5, fiv /32, . . . , a decreasing 
series, and at the same time every a is less than every /?. 

1. Hence it follows that the numbers av have an upper limit a, the 
numbers fiv a lower limit b and that a = 6 (see Vol. I., § 38, 1.) 
Possibly we may have a=b. 

From the method of formation of the intervals $} dv # 2 , . . . 
it follows that : 

2. If any number a> of the series & falls in the interval dv , ex-
eluding its limits av , fiv ? then to occurs later in the series & than 
the pair of numbers av , fiv , belonging to the same series. 
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For av ? pv were the two earliest numbers of the series & 
occurring in the interval <S„_i. Hence it follows that : 

3. The greater the index v, the later are the two numbers av , pv 
in the series &, and as we have assumed the series of intervals dv 
not to terminate; we can advance av , (3V as far as we please in the 
series & by increasing v sufficiently. 

Now it follows very readily that no number g which co
incides with one of the numbers a, b, or, if a and b are un
equal, lies between them, can belong to the series &. 

For the number g lies within each one of the intervals Sv. 
Now if we assume that g occurs in &, and by (3) increase 
v so that av , pv come later in Q than g, then by (2) g cannot 
lie in the interval dv and thus the absurdity of our hypoth
esis is demonstrated. 

Hence it follows that the aggregate of all the numbers of an in
terval «, p does not form an enumerable mass. 

This theorem may be demonstrated in another way which 
is simpler in some respects and may be briefly indicated. 
We do not restrict the generality if we confine ourselves to 
the interval from 0 to 1. We shall imagine all numbers of 
this interval represented by decimal fractions with an in
finite number of terms. Finite decimal fractions are in
cluded if we make all the digits after a certain one equal 
to zero. To render this representation by decimal fractions 
unambiguous, it must be agreed that for a finite decimal 
fraction this representation must always be chosen, so that, 
for example, 0.4999 . . . must not be written for 0.5000... 

We will now assume that these decimal fractions form an 
enumerable mass. They may then be arranged in a count
able series, represented as follows : 

a>x = 0. a™ a^ a^ . . . 

( Û ) w2 = 0. < 2 ) «2
(2) a™ . . . 

a>z = 0 . a™ a2
(3) «3

(3) . . . 

where the dv) represent digits of the decimal system. 
But it is very easy to form a decimal fraction (or indeed, 

as many as we please) which is not contained in the series 
&. We have only to form 

where the fiv are digits of the decimal system, satisfying the 
one condition that for every v, ft, is different from dv\ This 



1897 . ] TRANSCENDENTAL NUMBERS. 179 

number y, which also belongs to the interval (0, 1) cannot 
be a number of the series &. 

The formation of y may be made still more general by 
arbitrarily selecting the /3's as far as we please and then ap
plying the law, /3V S dv). 

Since it has thus been shown that the real algebraic num
bers form an enumerable mass and that in every interval 
there are numbers which do not belong to a given enumer
able mass it follows immediately that : 

In every real interval there are transcendental numbers, 

§205. 

Transcendency of the Number e. 

I t is a far more difficult task to decide whether any given 
number is algebraic or transcendental. Here interest has 
chiefly been concentrated upon the two numbers which oc
cur so frequently in analysis, e, the base of the natural sys
tem of logarithms and the Ludolphian number TT, the ratio 
of the circumference of the circle to the diameter. 

For the number e the question was answered by Hermite 
in a celebrated memoir,* which has been made the basis of 
the later investigations upon the number n. The solution 
for the number rc, which was specially interesting on ac
count of its relation to the famous problem of the quadra
ture of the circle, for a long time, however, presented insur
mountable difficulties. Finally, Lindemann succeeded in 
demonstrating that K also belongs to the transcendental 
numbers. But Lindemann's proof still presented great dif
ficulties. These, however, have gradually been so com
pletely removed by the investigations of Weierstrass, Hu
bert, Hurwitz and Gordanf that the demonstration can now 
be made with quite elementary means and in the most sim
ple manner. 

If we represent by n (n) the product 

/ 7 ( w ) = l - 2 - 3 . . . n 
then, for any x, 

* H E R M I T E , " S u r la function exponentielle." Comptes rendus, vol. 
LXXVII , 1873. 

f L I N D E M A N N , " Ueber die Zahl TT." Mathem. Annalen, vol. 20,1882. 
WEIERSTBASS, " Z U Lindemann's Abhandlung über die Ludolph'sche 
Zahl ." Sitzungsbericht der Berliner Akademie, December 3, 1885. The 
articles by H I L B E R T , H U R W I T Z and GORDAN are all three found in vol. 
43, Mathem. Annalen (1893), the first two also in the Göttinger Nachrich-
ten of 1893. 
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(1) m 
as n increases indefinitely, approaches the limit zero and 
that more rapidly than the terms of a decreasing geometri
cal progression. For if h is an integer > | x | then is 

always a proper fraction if h = k. Consequently 

x xn 

<\Tm n(n)\\n(k) Jfc+l ife+2 n 

Hence it follows that the infinite series 

(2) , _ i . M + _ ^ . + _ * 5 + . . . 

converges for all values of x, and by it we define the ex
ponential function ex, whose simplest properties we here 
assume as known from analysis. We have, in particular, 
the relation 

for any two values x, y ; whence it follows that, for n a posi
tive integer, en is the nth power of the number 

(3) e = 2 + -~^ + 7 ^ + . . . = 2.718281828459 . . . 

If now r represents any positive integer, formula (2) may 
be written 

TI (r) TI (r) 
(4) n(r)e^n(r) + 7 ^ x + lr^^+...^x^ + x^UrJ 

where 
x x2 x^ 

(5) ^ 7 r = t ^ + l + ( r + l ) ( r + 2) + (r + l ) ( r + 2)(r + 3) + , • , 

and this formula holds for r = 0 if we assume 77 (0) = 1. 
Designating | x | by£, it follows from the theorem that 

the absolute value of a sum is never greater than the sum 
of the absolute values of its parts, that 

I ur I - r + 1 f ( r + 1 ) ( ; r + 2 ) ^ ( r + i ) ( r + 2 ) ( r + 3 ) ^ 

and therefore 



1 8 9 7 . ] TRANSCENDENTAL NUMBERS. 1 8 1 

I ^ K I 1 + r+ï72 + ï58 + '"- f l '-
If we put 

then qr is a function of x of which we know that \ qr\ < 1. 
We now substitute in formula (4) r = 0 , 1 , . . . n, and write 

out the terms in reverse order as follows : 

77 (n) ex == qn x
n è + xn + nxn~x + n (n — 1) xn~2 + 
. . . + n (n) 

(6) 77 (n — 1 ) e* = gw_1 af"3 e* + xn~x + (n — 1 ) œw~2 

+ (n —1) (w — 2)xn~*+ . . . 

Now assume an arbitrary integral function of x of the nth 

degree : 

(7) ƒ 0*0 = cn*" + c^*" - 1 + cn_2 ̂ " 2 + . . . + c0, 

and its derivatives 

/'(a?) = ne^-1 + (w—1) c ^ ^ " 2 + . . . 

(8) ƒ "(a?) « n ( h —1) cn^"2 + (n — l ) ( n —2) ( W « ^ + . . . 

ftox = n(n)en 

and for brevity put 

(9) F(x) = ƒ(*) + ƒ'(*) + ƒ "(a) + . . . + ƒ<">(*). 

Then -F(#) is an integral function of x of degree n. 
Finally assume 

(10) Q(x) = cnqnx
n + en_1qn_1x

n~1+ . . . + c0 q0, 

(11) P = cn 77 (n) + cn_x77 ( n - 1 ) + . . . + c0. 

Q (a?) depends upon x, though not expressible rationally 
in terms of x ; P, however, is independent of x. 

If we now multiply equations (6) in order by cw, cn_1?... c0 
and add, we get 

(12) e*P=F(x) + e$ Q(x). 
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This formula will serve as the foundation for the follow
ing deductions. 

If we assume e to be an algebraic number it must satisfy 
an equation of degree m (say) 

(13) C0+ G±e + C2e
2 + . . . + Cme™=0 

whose coefficients C0, Gv C2, . . . Gm are integral rational num
bers,* and C0 and Cm are not zero. I t is required to show 
the absurdity of this hypothesis. 

To this end we substitute in (12) for x successively the 
integers 0, 1, 2, . . . m, so that £ becomes identical with x, 
multiply by C0, Cv ... Gm and add. 

Then by (13), since P is independent of x, 

(14) 0 = C0F(0)+C1F(l)+...+CmF(m) 

+ 0 0 Q(0) + C 1 6 Q ( l ) + . . . + C m ^ § ( m ) 

and now by a suitable choice of the still arbitrary function 
F(x) we are to show that (14) is impossible. 

We select a prime number p, which is greater than m,f 
and put 

_x^ (i - xy (2 - xy... (m - xy 
(15) F(x)* ff(p-l) 

so that the degree n of f(x) is equal to (m + l)_p—1 and 
we now prove two things : 
(1) G0F(0) + ( 7 ^ ( 1 ) + . . . + CmF(m) is an integer dif
ferent from zero and, therefore, disregarding sign, at least 
equal to 1. 

(2) G0 Q(0) + Gxe Q(l) + . . . + Cm<T Q (m) is less than 1, 
both upon the assumption that p has been suitably dis
posed of. If these two points are established, we recognize 

* The following definitions are given by Weber in g 133: 
An algebraic number 6 is oalled an integral algebraic number when it 

satisfies a rational equation 
(l) em + A1e

m-1 + ...+Am-ie + Am-=o 
whose coefficients Aly A2l..., A m are integers. 

Integral algebraic numbers include as a special case ordinary integers, 
which, for distinction, we call integral rational numbers. W. W. B. 

f That there is always a prime number p greater than any given num 
ber ii was already demonstrated .in EUCLID (Elements, Book IX., Prop. 
XX., vol. 2 of HEIBERG'S edition). The proof is simply this, that the in
teger II(^)-)-l which is obviously greater than fi is divisible by no prime 
number, which is not greater than ft, because this number gives the remain
der 1 when divided by the numbers 2, 3 , . . . \i. Hence it is impossible 
that there be no prime number above ju. 
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the impossibility of equation (14) and therefore of equation 
(13), from which (14) was derived. 

If we arrange the numerator of ƒ (x) in powers of x we 
get an expression of the form : 

(16) f(x) = 
Ap_t x"-1 + Ap x* +AP+1 a*1 + 

A ( P - 1 ) 

where A^.u Ap, i ^ , , . . . are integers and A^_x — \Jl (m)]*, and 
hence is certainly not divisible by p. Comparing (16) 
with Taylor's Formula 

ƒ(*) - ƒ (0) + *f' (0) + TT^y /" (0 ) + • • • , 

we have 

/ (0 ) = / ' ( 0 ) = / " ( 0 ) ƒ*->(()) = 0 , 

f ^ (0) = Ap_„ fi»(0)~pA>J™ ( 0 ) = p (p + 1)AP+1,... 

Hence 
•F(O) = Ap^ + pAp + V(p + 1) A,+1 + ... 

is an integer not divisible by p. If, however, we arrange f(x) 
in powers of (x — 1), we get 

tW - 77(^ — 1) ' 

where 1?̂ , ^ , + 1 , . . . are again integers. Thence it follows as 
above by comparison with 

f(x) = ƒ (1) + (x - 1) f' (1) + ^~ff" (1) + . • • 

that 
-F(l) =pB, + p(p + l)B,+1 + ... 

Consequently, J P ( 1 ) is an integer divisible by p, and similarly 
we can show that F (2), F (3),... F (m) are integers divisi
ble by p. Since p can be chosen so large that C0 is not 
divisible by p, it follows that 

C0F(0)+C1F(l) + ...+CmF(m) 

is an integer not divisible by p and hence does not vanish ; 
thus (1) is demonstrated. 

If we can show further that by increasing p,Q(x) can for 
any positive x be made as small as we please, it will follow 
that for a sufficiently large value of p the expression (2) can 
certainly be made less than 1, and our proof is completed. 
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[Returning to the expression (10) for Q (x), let yw, ?v-i? 
. . . y0 denote the absolute values of the coefficients cn, cw_1?... c0 
of ƒ (x). Since qn, #w_i,. . . are less in absolute value than 
1, it appears that for every positive x, | Q (x) | is less than 

(17) <P (x) = ynx« + rn_,a*-1 + . . . + r o . 

The coefficients cw, cn_1?... c0 of the function ƒ (a) in (15) 
differ from the yni jv-u . . . y0 only in sign. If we replace x 
by — x, thus forming the function 

,, N ^a^" 1 (1 + xy (2 + ap* . . . (m + x)p 

J(-x)~ / Z ( p - 1 ) ' ' 

this function has the same coefficients as ƒ (a?) but with all 
the signs positive. I t is therefore nothing else than the 
function <p (x). 

If we put 

X = x (1 + x) (2 + a) . . . (m + a) , 
then 

<18> 'O-T'fiö^) 
and, as shown at the beginning of this section, w i t l i j in
creasing indefinitely this approaches the limit zero. 

Therefore e is a transcendental number. 

§206. 
Transcendency of the number n. 

By the same methods we may now show the transcendency 
of the number n. As definition of this number we use the 
property that it is the least positive number which satisfies 
the equation 

(1) ^ = - 1 , 

when ex is defined by the formula § 205 (2). 
If we assume now that n and consequently i x also is an 

algebraic number, then is i K one of the roots of an irreduci
ble rational equation %(x)=0 whose coefficients are inte
gral rational numbers. 

If we denote the various roots of this algebraic equation 
by pv / ? 2 , . . . pv and the coefficient of xv in % toy ty then 

(2) ;K*)= < * - £ ) ( * - f t ) - • • ( * - & ) , 
and the products a pxi a /?2,. . . a $v are integral algebraic num-
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bers and their integral symmetric functions therefore in
tegral rational numbers (§ 133). 

As the number i n must occur among the pJ8, we must 
have by (1) : 

(1 + e^i) (1 + 6&0 . . . (1 + <^ )= °> 

or expanding 

l + 2 /* + 2 ̂ '+p* + 2 /*+fo+fe + ... = o. 
Among the exponents in this sum the number 0 may oc

cur several times; suppose ( 0 — 1) times so that 0 is a 
positive integer at least = 1. The remaining exponents 
Pt> Pi + Ph, Pi+ Ph+Ptf- • •> some of which may be equal to one 
another, we will designate by av a2 , . . . a^ , so that the equa
tion becomes. 

(3) 0 + e** + e«* + . . . + e V = 0. 

The quantities av a2J . . . a^ are algebraic numbers which 
multiplied by the rational integer a become integral alge
braic numbers. The symmetric functions of the various 
sums fiv Pi+Ph, Pi+Ph+Pk, • • • are at the same time symmetric 
functions of pv . . . fiv, and therefore rational numbers. These 
sums are therefore the roots of a rational equation and since 
the root 0 can be removed as often as it occurs, the quantities 
av a a , . . . oc^are also roots of a rational equation. The funda
mental symmetric functions of the quantities a ava « 2 , . . . a «^ 
are integral rational numbers. 

The absolute values of the numbers 

we shall designate by 

If in equation (12) of the previous section we put 
x = 0, av a2 , . . . a^, and apply equation (3), we obtain 

(4) 0 - GF(0) + F(^) + F(a2) + ...+FM 
+ C Q (0) + ** Q ( O +^ Q («,) + . . . + 6 V Ö K ), 

and we have to show the impossibility of this equation by 
a suitable choice off(x). 

Let p again be a prime number which may increase with
out limit, and put 
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_ <***-* x ^ (x - a,y (x - a2y... (x - a^y 

so that ƒ(«) is a function with rational coefficients. 
As in the previous section we arrange in powers of x : 

where Ap_t, Ap, Ap+1, . . . are integral rational numbers and 

Ap_x = (—1)^ a"*4*"1 «/ a* ... dP. 

If we assume p greater than either of the rational integers 

a, a^a± a2... ap , 

Ap_i will not be divisible by p and hence 

F CO) = A - i + pAp + P ( P + l ) A+i + • • • 
will be an integer not divisible by p. Likewise if p is taken 
sufficiently large C is not divisible by p. 

On the other hand, arranging the numerator of f (#) in 
powers of a (x—aj we obtain 

JW ~ n (p-i) ' 

where Bp, Bp+1,.. . are no longer rational but are integral al
gebraic numbers, since the numerator of ƒ(#) is an integral 
function of ax, aav . . . aa^ . 

From this it follows as in the last section that 

F(ax) = pBpa*> + p(p + l) Bp+1a»+l + ... 

If similarly we form F (a2), F ( a 3 ) , . . . F (o^ ) and observe 
that the sum 

is an integral rational number, it follows that 

is an integral rational number divisible by p. Hence finally 
we conclude that 

GF(0) + - P K ) + F(a2) + . . . + FM 

is an integral rational number not divisible by p, and hence 
not equal to zero ; it must therefore, disregarding sign, be 
at least equal to 1. 
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If now finally it can be shown that with the present 
choice of ƒ(») the function Q (x) can be made as small as 
we please, for any value of #, by a suitable increase of p, we 
may show, as before, the impossibility of equation (4). 

This may be seen as follows: Instead of the function 

(6) ƒ O) = cnx
n + c^af-1 + . . . + c0 

consider the function 

n ; ~ /7(jp—1) 
=rnxn + y^x*'-1 + ... +y0, 

which has all its coefficients positive, (though not necessa
rily rational). The coefficients cw, cn_1? . . . are formed by 
multiplication and addition from the numbers a, —av —a2, 
. . . - « M and the corresponding coefficients yn, ?v-i> • • • 
are obtained from these on replacing — ax, —a2,. . . — o^by 
their absolute values av a2, . . . a^ ; whence by the theorem 
previously mentioned it follows that the coefficients yn, yn-u 
. . . are certainly not less than the absolute values of the cor
responding coefficients cn, <v-i, . . . 

Now for every finite x whose absolute value is £, the ab
solute value of Q (a?) by § 205 (10) is not greater than 

ïnïn + r^i^-1 + . . . + ro= <KO, 
and that $£(£) can be made as small as we please by in
creasing p sufficiently appears from the form 

y ax U(p — 1) ' 
where 

X = a^+1x (x + ax) (x + a2) . . . (x + aM). 

Hence it is proved that : 
The number n is a transcendental number. The quadrature of 

the circle can not be effected by any geometric construction in 
which only algebraic curves and surfaces are employed. 

§207. 
IAndemann's General Theorem Regarding the Exponential 

Function. 

The transcendency of the numbers e and ?r, just demon
strated, is contained as a special case in a very general 
theorem regarding the exponential function announced by 
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Lindemann in the memoir above mentioned, of which an 
extended proof was given by Weierstrass in his memoir. 
We propose to demonstrate this theorem here by the use 
of the same methods as in the two special cases. The 
theorem may be stated as follows: 

I . An equation of the form 

(1) C1e*i+C2e**+... + C m 6V=0 

is impossible if the coefficients Cv C21. . . Cm are algebraic numbers 
and the exponents zv z2l. . . zmare distinct algebraic numbers ̂ unless 
all the coefficients Cv 02,. . . Cm are equal to zero. To prove 
this we establish first a lemma. 

Let 

be any real or imaginary but distinct quantities, and 

Av A2,... Ar 

likewise arbitrary quantities which do not all vanish. 
Similarly for the two series of quantities 

fiv A> • • • Ps, 
B1% B2,... B8. 

Designate by 
Yv Tit • • • Tt 

the distinct sums among the r s sums a{ + pk and put 

(2, A = AX e** + A2 e«* +... + Ar e% 
V ; J B = Bxe^ + B2eP» + . . .+B9eP; 
(3) A B = Cx &* + G2 ey* + . . . + Ct&*. 

The lemma to be proved may then be stated as follows : 
1. The coefficients Cv C2, . . . Ct can not all vanish. 
In the proof of this theorem we may obviously assume 

that no one of the coefficients Av A2,... ArJ Bv B21 ... B8 van
ishes, since those that vanish may be omitted. 

For brevity we shall say for the moment that of two dif
ferent complex numbers a, 6, a is less than b (a < 6) when 
the real part of a is less than the real part of 6, or if the 
real parts are equal, when the imaginary part of a is less 
than the imaginary part of b. 

If, in this sense, a < 6, b < c, then is a < c and if a < 6, 
c < dy then is a + c < b + d. 

In every finite series of distinct complex numbers there 
is then a definite minimum and hence if ax is the least 
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among the a's, ^ the least among the /5?s? then is «1 + /3X the 
least among the y's, and this sum is not equal to any other 
of the sums a. + fik. Therefore Cx= Ax Bv and Cx is differ
ent from zero, which was to be proved. 

This theorem may now be generalized by mathematical 
induction. 

2. If 
Af = Ai e*i' + A2' ea*' + . . . 
J." = .4/'e«i" + .42e«2" + . . . 
A'" = 4/" ***'" + A?' e«*'" + ... 

are any number of sums of the form (2), and yv y2, . . . the 
distinct sums among the expressions 

< + < + <" + '•-, 
then in the product 

(4) A' A!' A"; . . . == Ci &i + C2 ey* + . . . 

not all the coefficients Cv C2 , . . . are egwaZ £o zero. 
This lemma enables us in the proof of theorem (1) to 

make the simplifying hypothesis that the coefficients Cv 

C2, . . . Cm are integral rational numbers. 
Having assumed the existence of an equation of the form 

(5 ) X±exi + X2e*2 + . . . = 0 

with algebraic coefficients Xv Xa, . . . and distinct exponents 
xv x2l... we may always suppose the Xv X 2 , . . . to belong to 
the same algebraic corpus [Körper]* &. 

*The following résumé of WEBER'S definitions we take from 
MATHEWS'S review in Nature, vol. 55 (1896), pp. 25-28: The notion of 
a corpus, which is of the most fundamental character, is due to Dedekind, 
and is as follows : Let us take a finite or infinite system of elements 
«, /?, 7, etc., concerning which nothing is assumed except that they can 
enter into rational combination according to the rules of ordinary algebra; 
then the totality of all rational functions of a, /?, 7, etc., except those 
which involve division by zero, constitutes a corpus denoted by 

0 ( 0 , 0 , 7 , . . . ) . 

The simplest corpus is that of all rational numbers. This is contained 
in every other corpus; for if o> be any element of the corpus, then by defi
nition the corpus contains o / w, that is, unity; and from this all other 
numbers may be derived by rational operations only. 

If the elements of a corpus are all numbers it is called a numerical 
corpus, but the elements may be independent variables, or even variables 
subject to algebraical conditions. 

If Û (a, /?, y, . . . ) is any corpus, and x any quantity not contained in it, 
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Designate by uv u2, . . . variables and construct the norm 
of the linear form Xx ux + X2 u2 + . 

(6) N(Xlu1 + X1u% + ...) = * (uvuv . . . ) , 

which is an integral homogeneous function of the variables 
u with rational coefficients, whose degree is equal to the de
gree of the corpus £. 

If in (6) we put 

ux = e*i, u2 = e^,. . . , 

every product of the variables u becomes a quantity of the 
form e% where z is a sum of numbers x, and @(uv u2, . . . ) 
becomes an expression of the form Gxe

z^ + C2e
z* + . . . , whose 

coefficients are rational numbers. If the Xv X 2 , . . . do not 
all vanish, Gv C2, . . . by (2) are not all zero, even when 
the equal terms in the function @(exi, ex*,...) are combined 
into a single term Ge\ But if equation (5) holds, then 
<P(exi, ex2 j . . . ) = 0 and hence 

C X i + G2eh + . . . = 0. 

If any of the coefficients Cv G2, . . . are fractions, they can 
be converted into integers by multiplying the equation by 
the lowest common denominator. 

the corpus ft (a?, a, /?, y, ) is said to be derived from ft (a, /?, y,. . .) by the 
adjunction of #. 

If z is an undetermined variable, the polynomial . 
f(z)=a0z™ + a, z™-1-]- ...+am 

is said to be a function in ft, when all the coefficients a0, Oj,. . . am belong 
to ft. 

When ft is given, we may, if we like, regard all the quantities belong
ing to it as rational : for this reason Kronecker calls a corpus a domain of 
rationality. 

A function in ft is reducible (in ft) if it can be resolved into the prod
uct of two functions in ft. A function which is irreducible in ft may be 
reducible in a corpus derived from ft by adjunction. 

Let ƒ(z) be an irreducible function in ft of the nih degree in z\ then the 
equation 

M=0 
is assumed to have n conjugate roots zly %, . . . zn. If ft is a numerical cor
pus, the roots have actual numerical values ; but this is really immaterial 
so far as the general algebraic theory of the corpus is concerned. By the 
separate adjunction of the roots, we obtain the conjugate corpora ft (z1), 
ft (22), . . . ft ( zn ), each of which is called an algebraical corpus of the 
nth degree. These conjugate corpora are not necessarily all different ; they 
may, in fact, be all identical, and the corpus is then called a Galoisian or 
normal corpus. W. W. B. 
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3. We need then only to show that equation (1) can not hold 
for any system of integral rational numbers Cv C2, . . . CnJ which 
do not all vanish. 

We assume, therefore, the existence of an equation 

(7) Axe
xi + A2e

x*+ . . . = 0 

whose coefficients Av A2, . . . are integral rational numbers, 
not all = 0, the exponents xv x2, . . . being distinct algebraic 
numbers. Designate by £ a normal corpus [Normalkörper] 
to which all these numbers xv x2, . . . belong, and by 0 a 
primitive number of this corpus; further by 

<*'= CM'),'"=(#,*"),••• 
the substitutions of the corpus &. If by one of these substi
tutions, a\ the numbers xv x2, . . . pass into #/, x2, . . . then 
these also must be distinct. 

Let now u be a variable and put 

(8) TJ=*AX euxi + A2 e
ux2 + . . . 

Apply to this function all the substitutions <r', a"', . . . and 
designate the functions thus obtained by U', U",... Al
though we are not dealing with algebraic numbers simply, 
we may call the product of all these functions the norm of 
U. This product has the form 

(9) N{ Ü) = Ci euzi + C2 eu*2 + . . . , 

where the Cv C^ ... are likewise integral rational numbers. 
The quantities z^, z2, .. . are numbers of the corpus £, which, 
if we combine terms with like exponents into a single term, 
we may assume to be distinct. At the same time we have 
on account of (7) 

(10) Cxe
zi + C2e*2 + . . . = 0. 

The expression in the second member of (9), as shown by 
its formation as norm, has the property of remaining un
changed after any one of the substitutions <r', <r", . . . If we 
expand (9) in powers of u, every term of the expansion must 
possess this invariant character ; hence, if h is an arbitrary 
positive exponent, the expression 

Cxz?+CX+... 
must admit the substitution ; but this sum is a number of 
the corpus £, and hence a rational number. This may be 
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summed up as follows : If g (z) designate any integral 
function of z with rational coefficients, then is 

C1gM + C2g(z2) + ... 
a rational number. 

4. The proof of theorem I is thus reduced to the proof of the fol
lowing special case : Given an equation 

(11) Cxeh + G2eh +...+ Cme*m= 0 

in which zvz2,.. . zm are distinct algebraic numbers, while 
Cv C 2 , . . . Cm and the combinations 

(12) C1g(z1) + C2g(z,) + ...+ Cmg(zJ 

are rational numbers, if g(z) be any integral function with ra
tional coefficients, then must Cv C2,. . . Cm all vanish. 

To prove this theorem we determine first a positive in
tegral rational number c such that 

(13) xx = czv x2=*cz„... xm=czm, 

become integral algebraic numbers. We assume the co
efficients Cv C2,... Cm to be integral rational numbers and 
form an integral function 

(14) <p (x) = axr + a^-1 + . . . + ar 

with integral rational numerical coefficients, which pos
sesses the following properties : 

(1) The numbers xv x2J. . . xm are found among the roots 
of <p (x) = 0. 

(2) The sum 

0i *(*ù + cy (*,) + ... + cmr' o o - * i 
which by hypotheses (12), (13) is a rational integer, is dif
ferent from zero. 

To see that such a function as <p(x) always exists take 
first a function / ( » ) , which satisfies only condition (1) , 
and the second condition that no one of the numbers 
xv x2,... xm is a double root of %(x). Such a function mani
festly exists. We may, for example, to get a function x 
take the norm of the product (x — x±) (x — x2) . . .(# — xm) 
freed of any divisors that it may have in common with its 
derivative. ISTow put 

<p(x) = «*/(»), v'fa) = xfx' ( O , <?' (»,) = < Y ( # 2 ) , . . . 
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Then the sum 

cy oo +... + cy(xj = ca' <XK* + • •. + O ' (*„ ) ** 
certainly cannot vanish for every exponent h, since other
wise, contrary to our hypothesis, C ^ ' ^ ) , . . .0m/'(#m) would 
all equal zero. 

Now that the existence of a function <p(x), such as was de
sired, has been established, we apply the formula § 205 (12), 

exP(x) = F(x) + 4 Q(x). 

In this we put x = zv z 2 , . . . zm and designate the absolute 
values of zv z2, ... zm by £„ ? „ . . . ?w. 

Then by (11) we obtain 

(15) 0 = Ox FOO + Of JP(0 + . . .+CmF(zJ 
+ C.efi Q(zx) + C > Q(z2) + . . . + Cmet.F(zJ, 

and if /(a;) is an arbitrary integral function of the nth degree, 
we have 

(16) F(z) = ƒ(*) + ƒ (.) + . . . + ƒ < » . 

Designating by jp a natural prime number which may be 
made as large as we please, we put x = c z [according to 
(13)] and 

(!7) ƒ ( * ) - / 7 ( p - l ) ' 

where ?> (#) is the function satisfying the conditions 
( 1 ) , ( 2 ) . 

Arranging in powers of (x—xj we may write 

9 (xy-1 <p*(x) = <p' (x,y (x—xj*-1 + A9 oo (x-x.y 
+ Ap+1(x1)(x-xiy+'+... 

where Ap (xx), Ap+1 ( ^ ) , . . . are integral algebraic numbers 
and rational functions of xv On the other hand by Taylor's 
theorem : 

to = to) + (.*-Of' « + - ^ 3 ^ ƒ" («,) + • • • 
and e (2—2a) = «—a .̂ The comparison shows that 

to) = o j ' oo - 0,... / « ^ O J - o,/<^ fSl)=c--v oo», 
f«(0 = K A (*1),/

i,+1) GO =2> CP+i) ̂ +14+x 00, • • • 
and hence 
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F(zJ = cr*9 \x,y + p c*Ap (Xl) + p (p + l ) ^ + 1 ^ + 1 ( ^ ) + . . . ; 

in this xvzv may be replaced by x2, «2, or by #8, ss, etc. 
Accordingly the integral rational number 

C1F(z1)+C2F(z2) + ...+ CmF(zJ 

is congruent, to the modulus p, to 

c-1 [Cx/ (Xly + o2?'(*,)' + . . . + cm9'(o*]• 
Since Ĉ , 02 , . . .,£7, are integral rational numbers, it follows 

that 0 / = 0X, 0 / = 02 , . . . (mod. p), and by an application of 
the polynomial theorem, 

c19' w + c2 <P' (x2y +... + cmV' oo*= 
[ C ^ ' (*,) + C,P ' (x%) + ...+ Cm9' (xjy= W (mod. p). 

Accordingly we have the congruence 

(18) C, F ( O + C2 F&) + ...+Cm F(zJ = <?-* k" (mod. p). 

Now the numbers c, A; are independent of p, and hence we 
can take p so large that it will not be contained in c and in k. 

5. Hence the sum G1F(sj + C2 F(z2) + . . . + GmF(zm) is an 
integral rational number different from zero and therefore at least 
equal to 1. 

We designate by ^ (a?) the integral function derived from 
<p(x) on replacing any negative coefficients among a, av a2,. . . 
by their positive values. The function 

h W - / 7 ( p _ l ) 

which thus results from (17) will have only positive coeffi
cients and these coefficients are in absolute value certainly 
not less than the corresponding coefficients of f («), because the co
efficients of fY(z) are derived by addition from the same 
numbers which in the formation of the coefficients of f(z) 
are partly added, partly subtracted. 

Hence from formula §205 (10) letting ? = \x\, we 
have 

6. And therefore for any finite value of z Q(z) can be made as 
small as we please by a sufficient increase of p. 

By 5 and 6 it has been shown that if p be taken large 
enough equation (15) is impossible. Hence 4 and conse
quently the whole theorem I. is proved. 
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This theorem now admits of manifold applications. I t 
gives us first the transcendency of e, if we regard Cv 02,"... 
zv s 2 , . . . as integral rational numbers. I t gives further the 
transcendency of it. For from the equation 1 + eiir == 0 it 
follows by I . that in} and consequently rc, can not be alge
braic. 

I t follows further that 
For every algebraic number x, except x = 0, X = ex is a trans

cendental number. 
For every algebraic X, except X = 1, every natural logarithm 

x = log X is a transcendental number. 
For every arc which stands in an algebraically expressible rela

tion x to the radius, except x== 0, X = sinœ is a transcendental 
number. 

This follows from I, since 2iX= eix — e~ix. 
The same is true for the other trigonometric lines cos x, 

1 x 
tan X) and for the chord — sin —. To add one more re-

suit: The transcendental equation tan x= ax for a alge
braic has, except 0, only transcendental numbers for roots. 

SHORTER NOTICES. 

A Geometrical Treatment of Curves which are Isogonal Conjugate 
to a Straight Line with respect to a Triangle. Part I. By I. J. 
SCHWATT, Ph. D., University of Pennsylvania. Boston, 
Leach, Shewell and Sanborn, [1895]. 8vo. 6 and 46 pp. 
Four points serve to pair off all the points of a plane, if 

we take for any point its conjugate with respect to all conies 
through the four points. This is the reversible transforma
tion which Durège (Ebene Curven dritter Ordnung) calls 
Steiner?s Transformation. The absolute or circular points 
at infinity may be one of the point pairs; the conies are then 
rectangular hyperbolas, and the four basis points are or-
thocentric. Any two points 0 Or forming such a pair, when 
considered with reference to the diagonal triangle A B C of 
the four points, are said to be isogonal conjugates, for the 
reason that A 0 and A Of make opposite angles with A B 
and A C. 

Transformation by isogonal conjugates is thus a special 
view of a simple transformation of great importance. In 
Dr. Schwatt's pamphlet, of which a continuation is in 
hand, the method is applied in particular to the discussion 
of the transformation of a straight line, which is, of course 


