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I N 1890 Klein* published his solution of the problem of 
enumerating the roots of the Hypergeometric Series between 
0 and 1. 

His method depending on the conformai property of the 
Schwarzian «-function, finally turns on a discussion of the 
shape of the circular triangles on which the #-halfplane is 
mapped. 

Solutions by Hurwitzf and Gegenbauer J appeared soon 
after, both depending on the determination of a chain of 
contiguous hypergeometric functions which could be em
ployed as a set of Sturmian functions. 

Klein's method, while it makes use only of the differen
tial equation and yields the desired result in an exceedingly 
neat form, does not lead to this result so directly or natur
ally as certain methods of Sturm (Tom. 1, Liouville's Jour
nal). 

I t is the object of this paper to apply two well known 
theorems of the above mentioned memoir of Sturm to the 
solution of the problem in hand. 

The theorems referred to are: 
A. Let x1 and x2 be two regular singular points of the 

differential equation 

If there be no singular point between xY and x2 and all the 
magnitudes involved be supposed real, the real roots of yx 

between xx and x2, yx being the solution corresponding to the 
larger exponent of xv will move toward the point xv if, for 
all values of x between xx and x2, <p (x, a) decrease with the 
decrease (increase) of a; i. e., yx is gaining or at most not 
losing roots between xx and xr 

* Math, Ann., vol. 37. 
f Math, Ann. j vol. 38. 
t Wiener Sitzungsberichte, vol. 1002a. 
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B. In the interval xt a?a, between any two consecutive 
real roots of a solution of (1) lies one and but one root of 
a linearly independent solution. A more general form of 
this theorem is the following: If y1 denote the solution cor
responding to the larger exponent of xx and x0 the root in 
the interval x1 x2 nearest xv any solution linearly inde
pendent of y1 will have one root between each pair of con
secutive roots of yx and one root between xt and #0.* 

The singular points of the hypergeometric equation: 

^1 » Y— (a + P+l)x dy _ afi_ Q 

dx2 x(l — x) dx x(l— x) I* 

are 0 oo 1 
the exponents, 0 a 0 

the exponent-differences being 

A = ^ — 1 , ^ e = a — fi} v=*a + fi — y. 

The hypergeometric equation is reduced to the binomial 
form, 

d2¥ , , N_ 
^ r 2 = K ^ / ^ ; x)y 

~" T x2(i-xy y 

by the change of dependent variable 
l+\ 1 + v 

y=yx 2 (1 — x) 2 

The method to be explained serves primarily, as does the 
method used by Klein, to determine the number X of real 
roots of the solution corresponding to the larger exponent 
of x = 0 in the interval 0-1. The word root will always be 
used to denote a real root lying between 0 and 1. In the 
case where A < 0 the determination of the number of roots 
of the hypergeometric series which is then the solution cor
responding to the lesser exponent of x = 0 is effected by 
means of B. The treatment of the so-called exceptional 
cases is that of Klein but in the method here employed ap
pears as a special case of the general discussion. 

* These slightly generalized forms of Sturm's theorems can be deduced 
from the analysis given by Sturm, for other proofs see Professor Bôcher's 
paper in the March BULLETIN. 
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Since F (a, /?, y, x) = F(P, a, y, x) 

there is no loss of generality in assuming 

Consequently 

^ W ) = _ . ^ < 0 , 0 < K 1 . 
3/A x (1 — x) 

Further, since 

F (a, p, r, x) = ( i - ^ ) 7 " a ~ ^ ( r - /?, r - a, r , *) (2) 

has the same roots as .F (a, /5, ^, x) 

and as it satisfies a differential equation with the exponent 
differences A, ^, — v; we may suppose v > , 0. 

By A., the solution y, (y,) corresponding to the larger 
exponent of x = 0 is gaining roots as y. increases. Two cases 
present themselves:—I. X > 0, I I . X < 0. 

I. 
X > 0. Here 0 is the larger exponent and the corre

sponding solution is 

, = jrç«, ft r,«) - F ( 1 + X + » + V, 1 + X ^ + ", I + A. .) 

= «JF(«, ft a + 0 - r + 1, 1 - *) 

i\\ + A) r ( - v) 
where 

r / l + ^ - / « - ^ „/1+/1 + M-, 

-K 
6 = 

2 / \ 2 

r(i + A) r(2 + v) 

rp-+*+ lJ- + v\ rl1 +X - *" +"\ , ( 1 ± « ^ r ( > 

Since v > 0, it is obvious from the series itself that ?/ can 
have no positive roots unless /5 = (1 + X — fi + v) /2 < 0. 
If then /*, starting with a value a little less than 1 + X + v, 
increase, £ will decrease. For £ = 0, — 1, — 2, etc., we get 
a series of polynomials of degree 0, 1, 2, etc. Whenever jS 
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passes through zero or a negative integer, b changes sign, 
T(/5) becoming infinite. Since v > 0, the sign of y for val
ues of # a little less than 1, depends only on b and there
fore only on r(/9). When fi = 0, y = 1, which has no 
vanishing point, however, immediately after fi decreases 
through 0, b changes sign and consequently ^x=1 changes 
sign; so that as y = 0 is gaining roots as fi increases, an odd 
number of roots must have been gained immediately after 
fi passed through 0,—a sudden dropping of the whole curve 
y = jF(a? fi, y, x) below the x-axis is impossible since yx=zQ=l. 
There could have been a gain of but one root when fi de
creased through 0, for as fi keeps on decreasing no roots are 

lost and when fi = — 1 , y = F(a, — 1, y, x) = 1 xwhich 

has but one root. 
In the same way immediately after fi decreases through 

— 1,6 changes sign and one root is gained for when fi = — 2 

„-rc-V,.)-! —*?. + !i£+>|.> 
which has not more than two roots. X, the number of 
roots, is, therefore, equal to the number of changes of sign 
of b as fi decreases from a,small positive value to the re
quired negative value, i. e. 

which is the number of roots of 

J P ( « , fi, y, x) = 0 when X > 0, v > 0. 

I follow Klein in using E (n) to denote the largest posi
tive integer less than n, so that E (n) = 0 if n < 1. When 

v < 0 , by 2. X = j E ( l - ( r - « ) ) 

I I . 
When A < 0, 1 — y is the larger exponent of 0 and the 

corresponding solution is 

y-^jf-' + ' + ̂ - V + '.l-*,,) 
= x-*F(a',iS',/,x) 



2 7 8 BOOTS OF THE HYPERGEOMETRIC SERIES. [May , 

The hypergeometric series J P ( V , £', /, x) satisfies a differ
ential equation whose exponent differences are — A, ix} v, 
therefore, by I. it has X = i£ ( l — /?') roots between 0 and 1 
if v > 0 or if v < 0 has X = JST(l — 0 ' — a')) roots. 

All four results can be written in one formula 

In case I I . we have determined the number of roots of a 
solution linearly independent of the hypergeometric series. 
By B. F (a, p9 r, x) has when X < 0 N= X o r X + 1 roots, 
the even or odd value of N being chosen according as yx=i 
is positive or negative. There are thus two cases. 

1°. v > 0. Here, according as b is > or < 0, i. e., ac
cording as 

the sign of yx=l is > or < 0. 
2°. v < 0. Here according as a is > or < 0, i. e., ac

cording as 

r(i-M)r(1+;-*--) r ( I± i+^) > 0 r<o 
2/^!, is > or < 0. 

If i n l ° 6 = 0, t.e.,if (1 + /I + A* + *)/2 or (l+A—M+0/2 
is zero or a negative integer, the hypergeometric series 
ceases to be linearly independent of JP(a, /?,«+/?—r+1,1—a?) 
which when v > 0 is the solution corresponding to the 
larger exponent of x = 1 ; so that by B. in this case the 
hypergeometric series has X roots. For the same reason in 
2°, when a = 0, i. e., when (1+A— /*—v)/2 or (1+A+/4—v)/2 
is zero or a negative integer the hypergeometric series has 
X roots. 
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