complex number arguments which is linear and homogeneous in each argument and is reversed in sign by the interchange of any two of its arguments as a linear alternate or simply an alternate. The author proposes to investigate the geometric relations of quaternion and higher complex numbers, and to determine the relations that exist between alternate identities and integrations through a given space and over the boundary of that space. An instance of such a connection has been already discussed by the author in the Proceedings of the Indiana Academy of Science, 1891.

A portion of the Tuesday afternoon session was devoted to a general discussion of the following topics: (1) The accurate definition of the subject matter of mathematics; (2) The vocabulary of mathematics, the possibility of correcting and enriching it by coöperative action.

F. N. COLE.

COLUMBIA UNIVERSITY.

CONCERNING REGULAR TRIPLE SYSTEMS.

BY PROFESSOR ELIAKIM HASTINGS MOORE.

Read before the AMERICAN MATHEMATICAL SOCIETY at its Fourth Summer Meeting, Toronto, Canada, August 17, 1897.

§ 1.

Introduction. Definitions and notations.

$$\begin{array}{ccc} \mathbf{A} & & k \cdot \mathrm{ad} & & \begin{bmatrix} l_1, \, \cdots, \, l_k \end{bmatrix} \\ & & k \cdot \mathrm{id} & & \{ l_1, \, \cdots, \, l_k \} \end{array}$$

is an arrangement of k letters or elements $l_1\cdots l_k$ in which the order is not material. The letters are distinct.

A triple system Δ_t is an arrangement of t letters in 3-adic triples in such a way that every 2-adic pair appears exactly once in some triple of the triple system. There is no question of order of the triples of the triple system. t must have the form t=6m+1 or t=6m+3; t denotes always a number of such (say) triple form.

A triple system Δ_i is invariant under a certain (largest) substitution group G^t on its t elements; the Δ_i and the G^t belong each to the other; the G^t is a triple group.

In the definitive theory of triple systems and triple groups we must, among other things, determine whether a (any) particular group G^t of triple degree t is a triple group, and, if so, we must construct its various triple systems A_t .

A system Δ_t is transitive if its group G^t is transitive.

A transitive system Δ_t is regular if its group G^t contains a regular subgroup H_t^t of order t on the t elements of the Δ_t ; the group H_t^t is a group of regularity of the system Δ_t ; the system Δ_t has with respect to the group H_t^t the regular aspect $\Delta_t \mid H_t^t$. A regular group H_t^t is uniquely determined by the corresponding abstract group H_t .

Mr. Netto has exhibited, cyclic, or, as I say, cyclic-regular $\Delta_t(1^\circ)$ for t=6m+1=p (p) any prime and (2°) for t=6m+3=3p (p) any prime of the form p=6k+5.

Mr. Heffter in the current number (vol. 49, part 1) of the Mathematische Annalen, has brought out clearly the "difference problems" underlying the problems of construction of the general cyclic-regular Δ_t for t=6m+1, 6m+3. He then exhibits cyclic-regular $\Delta_t(3^\circ)$ for t=6m+1=12k+7=3p-2 (p any prime of the form p=4k+3 with the primitive root 2) and (4°) (by a slight modification of Mr. Netto's (2°) system) for t=6m+3=3p (p any prime greater than 3).

Now a cyclic group H_i^i is the simplest Abelian or commutative group H_i^i .

In a paper, Concerning Abelian-Regular Transitive Triple Systems, forwarded to the Annalen three weeks ago, I have analyzed (l. e., § 1) the general Abelian-regular \mathcal{L}_t , and have exhibited (l. e., (a) § 2, (b) §§ 3, 4) Abelian-regular \mathcal{L}_t with respect to the abstract Abelian group H_t where (a) t is any integer t = 6m + 3,

 H_t is any Abelian group of order t having one invariant 3: or

- (b) t is any integer t = 6m + 1 in which every prime factor of the form p = 6k + 5 enters an even number of times;
- H_t is any Abelian group of order t in whose invariant-character every such prime enters always with the exponent 1.

The systems (a, b) are sweeping generalizations of the systems $(2^{\circ}, 4^{\circ}; 1^{\circ})$ of Messrs. Netto and Heffter.

My analysis of the general Abelian-regular system Δ_i was so phrased as to admit of immediate application in the constructions (a, b). In this paper the general regular triple system Δ_i is subjected to a similar analysis (§ 2), on the

basis of which a generalization of the system (a) is effected $(\S 4)$.

Regular triple systems $\Delta_t \mid H_t^t$ and the corresponding sextette separations $\sigma_{m_1, m_2} \mid H_t$.

We denote the t elements of the group H_i and the t elements of the regular system $\Delta_t \mid H_i^t$ without confusion by the same notation— A_1, \dots, A_t . The substitution group H_i^t is made up of the substitutions

$$(1) \hspace{1cm} A_{j} = \begin{pmatrix} A_{1}, & \cdots, & A_{t}, & \cdots, & A_{t} \\ A_{1}A_{j}, & \cdots, & A_{t}A_{j}, & \cdots, & A_{t}A_{j} \end{pmatrix} \hspace{0.5cm} (j=1,2,\cdots,t).$$

The regular system $A_i \mid H_i^t$ is invariant under the t substitutions A_j (1) of the H_i^t . Hence the A_t contains with the triple $[A_{i_1} A_{i_2} A_{i_3}]$ the t triples (not necessarily all distinct)

(2)
$$[A_{i_1} A_{i_2} A_{i_3} A_{i_3} A_{i_3}] \qquad (j=1,2,\dots,t).$$

Writing the triple or 3-ad $[A_{i_1} A_{i_2} A_{i_8}]$ having regard to the order of the letters as a 3-id $\{A_{i_1} A_{i_2} A_{i_8}\}$ we see that the corresponding sextette

$$\sigma\{A_{i_1} A_{i_2} A_{i_3}\} = \begin{cases} A_{i_2} A_{i_3}^{-1}, A_{i_3} A_{i_1}^{-1}, A_{i_1} A_{i_2}^{-1} \\ A_{i_3} A_{i_2}^{-1}, A_{i_1} A_{i_3}^{-1}, A_{i_2} A_{i_1}^{-1} \end{cases}$$

is an invariant and indeed a characteristic invariant for the 3-idic triples

$$\{A_{i_1} A_j, A_{i_2} A_j, A_{i_3} A_j\}$$

of this set (2).

Such a sextette $\sigma\{A_{i_1}\ A_{i_2}\ A_{i_3}\}$ has the necessary and sufficient form

(4)
$$\sigma \mid H_t = \begin{cases} B_1, & B_2, & B_3 \\ B_1^{-1}, & B_2^{-1}, & B_3^{-1} \end{cases}$$

where*

(5)
$$B_1 B_2 B_3 = I$$
, $B_i + I$, $B_i + B_j^{-1}$ $(i, j = 1, 2, 3)$,

$$(I, B_3^{-1}, B_2), (B_3, I, B_1^{-1}), (B_2^{-1}, B_1, I).$$

From these remarks one draws conclusions (5, 6) of the text.

^{*} The group H_t is of odd order t. Every triple has three distinct letters. Two triples having two letters in common have also the third of each in common. The sextette $\sigma \mid H_t$ with B_1 B_2 $B_3 = I$ belongs to the 3-idic triples

the B's being elements and the I the identity element of the group H_i . There are in all two types of sextettes $\sigma \mid H_i$:

(6)
$$\begin{array}{ccc} (1^{\circ}) & B_{1}B_{2}B_{3} \ are \ distinct \ ; \\ (2^{\circ}) & B_{1}=B_{2}=B_{3}. \end{array}$$

According as the sextette $\sigma \mid H_t$ is $\sigma_1 \mid H_t$ or $\sigma_2 \mid H_t$ of the type 1° or 2°, it contains six or two distinct elements and the corresponding set of triples (2) contains t or $\frac{1}{3}t$ triples

and is indeed a (tactical) configuration* Cf_1 $\begin{pmatrix} t & 3 \\ 3 & t \end{pmatrix}$

or $C\!f_{\scriptscriptstyle 2}\left(egin{array}{c} t \ 1 \ 3 \ rac{1}{3} t \end{array}
ight)$ regular with respect to the group $H_{\scriptscriptstyle 4}^t$ of sub-

stitutions A_j (1). The type 2° occurs only if t has the form t = 6m + 3.

The system $\Delta_t \mid H_t^t$ is the composition of m_1 configurations $Cf_1 \mid H_t^t$ of type 1° and m_2 configurations $Cf_2 \mid H_t^t$ of type 2°, with distinct triples. Here $tm_1 + \frac{1}{3}tm_2 = \frac{1}{6}t(t-1)$, $\therefore 3m_1 + m_2 = \frac{1}{2}(t-1) = 3m$ or 3m + 1. Hence we have

(7)
$$t = \frac{6m+1}{6m+3}, \ (m_1, m_2) = \frac{(m,0)}{(m-m', 1+3m')}$$
$$(0 \le m' \le m)$$

Corresponding to and characteristic of this configuration separation $C\!f_{m_1,\,m_2} \mid H_t^i$ of the system $\varDelta_t \mid H_t^i$ is a sextette-separation $\sigma_{m_1,\,m_2} \mid H_t$ of the t-1 elements A (A + I) into m_1 sextettes $\sigma_1 \mid H_t$ and m_2 sextettes $\sigma_2 \mid H_t$ (in which repetitions of elements occur only within the individual sextettes $\sigma_2 \mid H_t$).

Conversely, with respect to any abstract group H_t of order t=6m+1, 6m+3 any such sextette-separation $\sigma_{m_1,m_2} \mid H_t$ of the t-1 elements $A \ (A + I)$ serves uniquely to define a regular triple system $\Delta_t \mid H_t^t$.

We consider as essentially the same the six sextettes $\sigma_1 \mid H_t$ derived from the two

^{*}I use the general matrix notation for configurations introduced in I (The General Tactical Configuration: Definition and Notation) of my paper Tactical Memoranda I-III (American Journal of Mathematics, vol. 18, pp. 264-303, 1896).

$$\left\{\begin{array}{ll} B_{1} \\ B_{2}^{-1} \\ \end{array}, \begin{array}{ll} B_{2}^{-1} \\ B_{2}^{-1} \\ \end{array}, \begin{array}{ll} B_{3}^{-1} \\ B_{3}^{-1} \\ \end{array}\right\} , \quad \left\{\begin{array}{ll} B_{1}^{-1} \\ B_{1}^{-1} \\ \end{array}, \begin{array}{ll} B_{3}^{-1} \\ B_{3}^{-1} \\ \end{array}, \begin{array}{ll} B_{2}^{-1} \\ B_{2}^{-1} \\ \end{array}\right\}$$

by cyclical permutation of their columns, since they arise from the six 3-idic triples corresponding to one 3-adic triple.

If in a sextette $\sigma_1 \mid H_t$ (4) we interchange

$$B_i, B_i^{-1} \ (i = 1, 2, 3),$$

the new say reciprocal sextette is a $\sigma_1 \mid H_t$ if and only if $B_1^{-1} B_2^{-1} B_3^{-1} = I$. This happens, for instance, always if H_t is an Abelian group. Two reciprocal sextettes of type 1° are essentially distinct.

§ 3

Explicit exhibition of a sextette-separation $\sigma_{0,1+3m} \mid H_{t=3^k=6m+3}$, where H_t is any group of order $t=3^k=6m+3$ whose elements not the identity are all of period 3.

Corresponding to the 1+3m pairs of reciprocal elements A (A + I) of the group H_{ι} we have the separation of those elements (of period 3) into 1+3m sextettes $\sigma_{2} \mid H_{\iota}$ of type 2° .

For the (cyclid) Abelian $H_{t=3^k}$ generated by k generators each of period 3 this separation underlies the Abelian-regular $A_3^{\ k} \mid H_{3^k}^{\ 3^k}$ whose group is the linear group modulo 3. (Netto, Substitutionentheorie, pp. 224–234.)

84

Explicit exhibition of 2^m sextette-separations $\sigma_{m,1} \mid H_{t=6m+8}$, where H_t is any group of order t=6m+3 having a self-conjugate element A_0 of period 3 and a subgroup K_{2m+1} of order 2m+1 not containing A_0 .

C denotes always an element of the subgroup K_{2m+1} . The 2m elements C(C+I) separate uniquely into m pairs of reciprocal elements C, C^{-1} . If the $C_i (i=1, \cdots, m)$ form a system of representatives of these m pairs, then so do the $C_i^i (i=1, \cdots, m)$.

The group K_{2m+1} extends by A_0 to the group $H_{t=0m+3}$. Since A_0 is a self-conjugate element in H_t , it is commutative with every element C. The elements A of H_t have the form C, CA_0 , CA_0^2 .

The separation $\sigma_{m,1} \mid H_t$ of the t-1=6m+2 elements A(C+I) of the H_t consists of the one sextette

(1)
$$\sigma_{2} \mid H_{t} = \left\{ \begin{array}{l} A_{0}, A_{0}, A_{0} \\ A_{0}^{2}, A_{0}^{2}, A_{0}^{2} \end{array} \right\} \qquad (A_{0}^{3} = I)$$

and of the m sextettes $\sigma_1^{\langle C_i \rangle} \mid H_i$ depending upon a representative system $C_i = C_1, \cdots, C_m$ of the m pairs of reciprocal elements C(C + I),

(2)
$$\sigma_{1}^{(0)} \mid H_{t} = \left\{ \begin{array}{ll} CA_{0}, & CA_{0}^{2}, & C^{-2} \\ C^{-1}A_{0}^{2}, & C^{-1}A_{0}, & C^{2} \end{array} \right\},$$

or

(3)
$$\sigma_{1}^{(C)} \mid H_{t} = \left\{ \begin{array}{ll} CA_{0}^{2}, & CA, & C^{-2} \\ C^{-1}A_{0}, & C^{-1}A_{0}^{2}, & C^{2} \end{array} \right\}.$$

The two sextettes $\sigma_1^{(0)}$, $\sigma_1^{(c^{-1})}$ of (2) or (3) are essentially the same, while $\sigma_1^{(c)}$ (2) and $\sigma_1^{(c)}$ (3) are essentially distinct (reciprocals).

According to the choice of (2) or (3) for each pair C, C^{-1} we have in all 2^m sextette-separations $\sigma_{m,1} \mid H_t$ and so 2^m regular $\Delta_t \mid H_t^t$ for every abstract group H_t of the character in question. In particular, since every Abelian group H_t with one invariant 3 is such a group H_t , we have the Abelian-regular $\Delta_t \mid H_t$ (§ 1, α).

For still more general types of groups H_{ι} of order t=6m+3 we may by suitable modification of the preceding process exhibit a sextette-separation $\sigma_{m,1} \mid H_{\iota}$. Thus, for example, for those H_{ι} with the following properties: (1) the H_{ι} has an element A_0 of period 3, (2) the group I, A_0, A_0^2 extends to the H_{ι} by the identity and certain 2m extenders C by pairs reciprocal, (3) a certain representative system $C_{\iota}(i, = 1, \cdots, m)$ of these m pairs is invariant under transformation by A_0 , (4) the system $C_{\iota}A_0$ $C_{\iota}A_0^2$ $(i = 1, \cdots, m)$ is a representative system of these m pairs. This type of group H_{ι} contains the type previously discussed and also, for instance, the group H_{21} generated by two generators A_0 , C subject to the generational relations

$$A_0^3 = I$$
, $C^7 = I$, $A_0 C = C^2 A_0$.

THE UNIVERSITY OF CHICAGO, May 4, 1897.