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demonstration * that all the roots of the polynomial solu­
tion are real, the reader is referred to an article by Bôcher 
in the April number of the BULLETIN. The method 
which he has there employed I shall make use of to 
prove that the roots of the accessory polynomial <p are 
likewise real. Let P denote the polynomial solution and 
xx, — , xn_x the roots of its derivative which are, of course, 
real. If P be substituted in the differential equation and x 
be placed equal to a root a of <p7 we get 

P" («) + (^—^ + - + ^ - ^ )P' («) = 0, 

or dividing by P ' (a) , 
1 1 1 —A, i _ ; t 

+ - + + * + - + ^= 0. 
a — xx a — xn _ ! a — eY a — er 

If now a is an imaginary root p + qi for which q is posi­
tive, the pure imaginary part of each fraction will have a 
negative sign. The equation therefore involves a contra­
diction. Hence 

VI I I . The roots of the accessory polynomial <p of the differ­
ential equation (8) for a Stieltjes polynomial are all real and in­
cluded between the two extreme singular points, ex and er. 

WESLEY AN UNIVERSITY, 
April, 1898. 

NOTE ON STOKES'S THEOREM IN CURVILINEAR 
CO-ORDINATES. 

BY PROFESSOR ARTHUR GORDON WEBSTER. 

(Read before the American Mathematical Society at the Meeting of April 
30, 1898.) 

T H E expression for the curl of a vector point-function, 
when required in terms of orthogonal curvilinear coordi­
nates, is usually obtained by direct transformation from 
their values in rectangular coordinates. The proof of 
Stokes's theorem given in my Lectures on electricity and 
magnetism, due to Helmholtz, can be easily adapted to 
curvilinear coordinates so as to prove the theorem indepen­
dently of rectangular coordinates. 

Let Pv P2, P 3 be the projections of a vector P on the 

* The proof given by Stieljes in the sixth volume of the Acta Mathe­
matica is based upon mechanical considerations. 



1 8 9 8 . ] STOKES'S THEOREM. 439 

varying directions of the tangents to the coordinate lines at 
any point. Let the projections in the same directions of 
the arc ds of a curve connecting two points A and B be dsv 
ds2, ds^. The theorem concerns the line integral of the re­
solved tangential component of the vector along the given 
curve : 

I =JAP cos (P, ds)ds 

But in terms of the curvilinear coordinates pv p2, />3 we have 

where 

ds,--^, < t e f _ - ^ , ^ s - ^ 

Let us now make an infinitesimal transformation of the 
curve, so that the transformed curve shall lie on a given 
surface containing A and B, and shall itself pass through 
those points. Then the change in the integral due to the 
infinitesimal changes dpv dp2J dp3 in the coordinates is 

-JT'(?)^+a(?)^+*(?)^+?^ 

The last three terms can be integrated by parts, giving 

I* ? **'- = K *• f" / '̂  ( £ ) <— *'2'3)' 
S 8 \A * 8 

and, the integrated terms vanishing at the limits, 

'j-j[,(£>.+*(ç)*-+,(£)*--<i(?h 
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Performing the operations denoted by ô and d, six of the 
eighteen terms cancel, and there remain the terms 

+ »*-*-«{a7,(?)-è(?)}] 
Now the changes fy2, dp2, dpv dp^ in the coordinates corre­
spond to distances 

dp2 dp* d_Pz dpj 

V V V v 
measured along the coordinate lines, and the determinant 
of these distances 

is equal to the area of the projection on the surface pt of the 
infinitesimal parallelogram swept over by the arc ds during 
the transformation. Calling this area dS, and its normal n, 
we have 

T-T- (fyv^°s "~" ^Pi^Ps) ^ c o s (nn^dS, etc. h2n3 

Now, repeating the transformation so that the given 
curve 1 is transformed into a second given curve 2 joining 
AB, the total change in the line integral is represented by 
the surface integral over the surface lying between the 
curves 

fdl^It-I, 

+ *A{l i (?) -è(S) } CO,('"") 
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But the difference of the line-integrals J2 — Ix is the line-
integral around the closed contour 21, so that we have the 
line-integral of the tangential component of the vector P 
around the closed contour proved equal to the surface-
integral, over a surface bounded by the contour, of the 
normal component of a vector £ whose components are 

The vector Q. is called the curl of P. 

OINT THE STEIGER POINTS OF PASCAL'S 
HEXAGON. 

BY DK. VIKGIL SYNDEE. 

T H E proof given by v. Staudt* of the conjugate nature 
of M, N with regard to the conic for which M, N are asso­
ciated Steiner points is perhaps rigorous, but unnecessarily 
long, and the most important statement f is only proved for 
the particular case in which the two triads of points defining 
the hexagon are linearly perspective. 

He gives a second proof in article 8 of the same paper 
which is much shorter, but involves imaginary elements. 

The following proof is much more simple and direct than 
either, and shows clearly which of Steiner's points are as­
sociated as 'mi Gegenpunkte. " 

Let Av A2, Az and Bv B2, JB3 be two triads of points lying 
on the same conic ; these points can be made projective in 
six ways, namely 

(AXA2A\ /A2ABAX\ (AZAYA%\ 
KBJBJ&J V -BAV V S I J W 

* Ueber die Steiner'sch en Gegenpunkte * * *, Orelle78 Journal, vol. 62. 
f ' ' Weil ferner P, Q harmonisch getrennt sind durch M und seine 

P o l a r e » * * . " 


