If C be the contact transformation whose defining functions are the above $X_{i}, P_{i}, Z ; Q$ an arbitrary point transformation ; and L the transformation of Legendre as generalized by Lie it may be shown analytically and geometrically that

$$
C=L Q L
$$

In case the contact transformations degenerate into point transformations, Q must be projective. Among the results of the note are complete generalizations of those of a memoir of G. Vivanti, Rend. del circ. mat. di Palermo, vol. 5 (1891). F. N. Cole.

Columbia University.

CONCERNING A LINEAR HOMOGENEOUS GROUP IN $C_{m, q}$ VARIABLES ISOMORPHIC TO THE GENERAL LINEAR HOMOGENEOUS GROUP IN m VARIABLES.

BY DR. L. E. DICKSON.
(Read before the American Mathematical Society at its Fifth Summer Meeting, Boston, Mass., August 20, 1898.)

1. While the present paper is concerned chiefly with continuous groups, its results may be readily utilized for discontinuous groups.* Indeed, the finite form of the general transformation of the group is known ab initio. Further, the method is applicable to the construction of a linear $C_{m, q}$-ary group isomorphic to an arbitrary m-ary linear group.
2. The formula of composition of m-ary linear homogeneous substitutions

$$
\left(\alpha_{i j}\right): \quad \xi_{i}^{\prime}=\sum_{j=1}^{m} \alpha_{i j} \xi_{j} \quad(j=1, \cdots, m)
$$

is as follows, where the matrix ($\alpha_{i j}{ }^{\prime}$) operates first:
where

$$
\left(\alpha_{i j}^{\prime \prime}\right)=\left(\alpha_{i j}\right)\left(\alpha_{i j}^{\prime}\right),
$$

[^0]Using Sylvester's umbral notation, consider the q th minors of the determinant $\left|\alpha_{i i}\right|$

The formula* expressing the q th minors of $\left|\alpha_{i j}{ }^{\prime \prime}\right|$ in terms of the q th minors of $\left|\alpha_{v j}\right|$ and of $\mid \alpha_{i j}^{\prime}$ is as follows:

$$
\left.\left|\begin{array}{l}
i_{1} \cdots i_{q} \tag{1}\\
j_{1} \cdots j_{q}
\end{array}\right|_{\alpha^{\prime \prime}}=\sum_{l_{1}, \cdots, l_{q}}\left|\begin{array}{l}
i_{1} \cdots i_{q} \\
l_{1} \cdots l_{q}
\end{array}\right|_{\alpha} \cdot \right\rvert\, \begin{aligned}
& l_{1} \cdots l_{q} \\
& j_{1} \cdots j_{q}
\end{aligned}{\mid a^{\prime}}
$$

the summation extending over the $C_{m, q}$ combinations $l_{1}, l_{2}, \cdots, l_{q}$ of the m integers $1,2, \cdots, m$ taken q at a time.
3. Consider the $C_{m, q}$-ary linear substitution
[a]: $\quad Y_{i_{1} i_{2}}^{\prime}{ }^{\prime}{ }_{i_{q}}=\sum_{l_{1}, \cdots, l_{q}}\left|\begin{array}{l}i_{1} i_{2} \cdots i_{q} \\ l_{1} l_{2} \cdots l_{q}\end{array}\right| \alpha \quad Y_{l_{1} l_{2} \cdots{ }_{\imath_{q}}}$,
where the sets $\left(i_{1}, \cdots, i_{q}\right)$ and (l_{1}, \cdots, l_{q}) take successively the $C_{m, q}$ combinations of the integers $1,2, \cdots, m$ taken q together and where further

$$
i_{1}<i_{2}<\cdots<i_{q} ; \quad l_{1}<l_{2}<\cdots<l_{q} .
$$

Its determinant has been called the q th compound of the determinant

$$
\left|\begin{array}{llll}
1 & 2 & \cdots & m \\
1 & 2 & \cdots & m
\end{array}\right|_{a}
$$

and equals \dagger the latter raised to the power $C_{m-1, q-1}$.
In virtue of (1) we have the composition formula :

$$
[\alpha] \cdot\left[\alpha^{\prime}\right]=\left[\alpha^{\prime \prime}\right] .
$$

Hence, if the substitutions (α) form a group, so do also the substitutions [a]. We will speak of the latter group as the " q th compound of the m-ary group." Hence the theorem :

An arbitrary linear group is isomorphic to each of its compounds.
4. Consider the more general substitution

$$
[\alpha]_{e}: \quad X_{i_{1} \cdots i_{q}}^{\prime}=\sum_{l_{1}, \cdots, l_{q}} \varepsilon_{l_{1}}^{i_{1} \cdots l_{q} i_{q}| |_{l_{1}}^{i_{1} \cdots i_{q} q_{q}} X_{l_{1} \ldots l_{q}},}
$$

[^1]where the ε 's denote ± 1. The product $[\alpha]_{\mathrm{e}} \cdot\left[\alpha^{\prime}\right]_{\mathrm{e}}$ equals

Hence if we define the ε 's such that
we have the formula of composition

$$
[\alpha]_{e} \cdot\left[\alpha^{\prime}\right]_{e}=\left[\alpha^{\prime \prime}\right]_{e}
$$

But $[\alpha]_{\epsilon}=1$ will correspond to (α) $=1$ if and only if

$$
\varepsilon_{i_{1} \cdots \cdots i_{q} i_{q} \cdots i_{q}}^{=}+1 \quad\left(\begin{array}{l}
i_{1}, \cdots, i_{q}=1, \cdots, m \tag{3}\\
i_{1}<\cdots
\end{array}<i_{q}\right) .
$$

From (2) and (3) it follows that

$$
\begin{equation*}
\varepsilon_{1}^{i_{1} \ldots . .}{ }_{q}^{i_{q}^{q}}=\varepsilon_{i_{1}^{1}, \ldots}^{1_{1}^{\prime} \ldots i_{q}^{q}} \tag{4}
\end{equation*}
$$

Hence if we set

$$
Y_{i_{1} \cdots i_{q}} \equiv \varepsilon_{1 \cdots}^{i_{1} \cdots i_{q}} X_{i_{1} \cdots i_{q}},
$$

it follows from (2) and (4) that $[\alpha]_{e}$ takes the form [α] of $\S 3$. Since $[\alpha]$ is the transformed of $[\alpha]_{e}$ by a linear substitution, their determinants are equal.

We confine our discussion to the group of the [a]. Denote the general m-ary linear group by G_{m} and its q th compound by $C_{m, q}$.

Infinitesimal Transformations of $C_{m, q}$, §§5-7.

5. Consider first the case $m=4, q=2$. Setting

$$
\begin{equation*}
\alpha_{i j}=1+\alpha_{i j} \delta t, \quad \alpha_{i j}=\alpha_{i j} \delta t, \tag{5}
\end{equation*}
$$

the general infinitesimal transformation of $C_{4,2}$ is seen to assign to the six variables $Y_{i_{1} i_{2}}$ the following increments :

Setting in turn one of the $\alpha_{i j}$ equal unity and the other 15 equal zero, we obtain 16 linearly independent infinitesimal transformations $A_{i j}$. These we exhibit (by detached coefficients) in sets of four each. We use the abbreviation

$$
P_{i j} \equiv \frac{\partial f}{\partial Y_{i j}} \delta t .
$$

The four transformations of each set generate a group of four parameters. Indeed $A_{i i}$ is Euler's homogeneous operator for the variables of the i th set, which do not enter into the coefficients of the other three of that set, so that the latter are commutative. Thus, for set (1), we have the commutator relations

$$
\left(A_{1 j} A_{11}\right)=A_{1 j}(j=2,3,4) ; \quad\left(A_{10} A_{1 k}\right)=0 \quad(j, k=2,3,4) .
$$

Its invariants are found by expanding the four determinants of the third order, one of which is skew-symmetric and therefore zero. The other three give the function (Pfaffian)

$$
F \equiv Y_{12} Y_{34}-Y_{13} Y_{24}+Y_{14} Y_{23}
$$

multiplied by Y_{23}, Y_{24}, Y_{34} respectively.
A similar result holds for the other sets. A skew-symmetric determinant appears in set (2) if we change the signs in the first column, in set (3) if we change the signs in the first and second columns. It is seen that F is an invariant for the total group of 16 parameters. We obtain also the (here trivial) invariant system formed by the six variables $Y_{i_{1} i_{2}}$.
6. Consider the case of general m and q. Neglecting
terms having the factor δt^{2}, as will be proven allowable, we have at once

$$
\begin{aligned}
& \left|\begin{array}{l}
i_{1} i_{2} \cdots i_{2} \\
i_{1} i_{2} \cdots
\end{array} i_{q}\right|_{\alpha}=1+\left(a_{i_{1} 1_{1}}+\cdots+a_{i_{q} i_{q}}\right) \delta t ; \\
& \left|\begin{array}{l}
i_{1} i_{2} \cdots i_{q} \\
j_{1} j_{2} \cdots j_{q}
\end{array}\right| \alpha=0,
\end{aligned}
$$

if two or more j 's differ from every i.
Consider the case in which $j_{1}, j_{2}, \cdots, j_{s-1}, j_{s+1}, \cdots, j_{q}$ form a permutation of $i_{1}, i_{2}, \cdots, i_{r-1}, i_{r+1}, \cdots, i_{q}$, while $j_{s} \neq i_{r}$. Since

$$
i_{k}<i_{k+1}, \quad j_{k}<j_{k+1} \quad(k=1, \cdots, q-1)
$$

the above permutation must be cyclic. According as $s<r$ or $s>r$, we readily see that

$$
\left|\begin{array}{l}
i_{1} \cdots i_{q} \\
j_{1} \cdots j_{q}
\end{array}\right| \alpha
$$

must be of the respective forms:

$$
\begin{aligned}
& \left|\begin{array}{llll}
i_{1} \cdots i_{r-1} & i_{r} & i_{r+1} \cdots i_{s-1} & i_{s} \\
i_{s+1} \cdots i_{s-1} \cdots & i_{q} \\
i_{1} \cdots & i_{r+1} & i_{r+2} \cdots i_{s} & j_{s} \\
i_{s+1} \cdots i_{q}
\end{array}\right| \alpha,
\end{aligned}
$$

the cylic permutation being confined to the i 's which run from i_{s} to i_{r} inclusive, and of the backward or forward type according as $s \gtrless r$. As the two cases are really not distinct, we consider only the first one, $r>s$.

Substituting for the $\alpha_{i j}$ their values in terms of the $\alpha_{i j} \delta t$, the first determinant takes the following form (where for the moment $a_{l k}$ is written for $a_{i i_{k}} \delta t$ and j for j_{s}):

In the expansion of this determinant, the only term of the first degree in the a 's is seen to be $a_{r j^{\prime}}$. Hence the determinant equals

$$
(-1)^{r-s} a_{i, j_{s}} \delta t .
$$

Similarly, the second determinant is found to have the same value.

The general infinitesimal transformation of the form [α] is therefore as follows:

$$
\begin{gathered}
\delta Y_{i_{1} \cdots i_{q}} \equiv Y_{i_{1} \cdots i_{q}}^{\prime}-Y_{i_{1} \cdots i_{q}} \\
=\delta t\left\{\left(a_{i_{1} i_{1}}+\cdots+a_{i_{q} i_{q}}\right) Y_{i_{1} \cdots i_{q}}\right. \\
\left.+\sum_{r, s}^{1 \cdots q}(-1)^{r+s} a_{i_{i_{j}}} Y_{i_{1} \cdots i_{s-1}-1 j_{s} i_{s} \cdots i_{r-1} i_{r+1} \cdots i_{q}}\right\}
\end{gathered}
$$

the summation also extending over all values of j_{s} from i_{s-1} to i_{s} exclusive. A simplification arises by introducing several coexistent notations for the same variable Y, viz:

$$
Y_{i_{1} \cdots i_{s-1} 1^{j} i_{s} \cdots i_{q}} \equiv(-1)^{s-1} Y_{j_{s} i_{1} \cdots i_{s-1 i s} \cdots i_{q}}
$$

Indeed, we may then perform the above summation with respect to s, and obtain for $\delta Y_{i_{1} \cdots i_{q}}$ the simpler value

$$
\begin{gathered}
\delta t\left\{\left(\alpha_{i_{1} i_{1}}+\cdots+\alpha_{i_{q^{i q}}}\right) Y_{i_{1} \cdots i_{q}}\right. \\
\left.+\sum_{r, j}(-1)^{r-1} a_{i_{i, j}} Y_{j i_{1} \cdots i_{r-1} i_{r+1} \cdots i_{q}}\right\}, \\
\left(r=1, \cdots, q ; \quad j=1, \cdots, m ; \quad j \neq i_{1}, i_{2}, \cdots, i_{q}\right)
\end{gathered}
$$

7. We may now readily obtain m^{2} linearly independent infinitesimal transformations $A_{l k}$ by setting in turn $a_{d k}=1$ and the other a 's equal zero.

For $A_{u}, \delta Y_{i_{1} \ldots i_{q}}$ is zero unless one of the i 's equals l, while

$$
\delta Y_{i_{1} \cdots i_{r-1} l^{i_{r+1}} \cdots i_{q}}=Y_{\imath_{1} \cdots i_{r-1} l_{r+1} \cdots i_{q}} .
$$

Hence

$$
\delta Y_{u_{1} \cdots i_{r-1} i_{r+1} \cdots i_{q}}=Y_{u_{1} \cdots i_{r-1} i_{r}+1 \cdots i_{q}}
$$

Hence A_{u} has the form given below (for $k=l$).
For $A_{l k}(l \neq k), \delta Y_{i_{1} \cdots i_{q}}$ is zero unless some $i_{r}=l$, in which case

$$
\delta Y_{i_{1} \cdots i_{r-1} 1^{i} r_{r+1} \cdots i_{q}}=\sum_{j}(-1)^{r-1} a_{l j} Y_{j_{1} \cdots i_{r-1} i_{r+1} \cdots i_{q}}
$$

Hence, since $\alpha_{l j}=0$ if $j \neq k$,

$$
\delta Y_{u_{1} \cdots i_{r-1} 1_{r+1} \cdots i_{q}}=Y_{k i_{1} \cdots i_{r-1} i_{r+1} \cdots i_{q}}
$$

The m^{2} independent transformations of the group $C_{m, q}$ are thus:

$$
\begin{gathered}
A_{u_{k}} \equiv{ }_{i_{1}, \cdots, i_{r-1}}^{1, \cdots, m} \sum_{i_{r+1}, \cdots, i_{q}}^{,} Y_{k i_{1} \cdots i_{r-1} i_{r+1} \cdots i_{q}} P_{l_{1} \cdots i_{r-1} i_{r+1} \cdots i_{q}} . \\
\left(i_{1}<i_{2}<\cdots<i_{q}, \text { and each } \neq l, \neq k\right) .
\end{gathered}
$$

Here $P_{l \cdots i_{q}}$ denotes

$$
\frac{\partial f}{\partial Y_{l \cdots i_{q}}} \delta t .
$$

Certain Properties of the Invariants of $C_{m, 2}$, §§ 8-10.
8. For $q=2$, we have the m^{2} transformations of $C_{m, 2}$

$$
A_{l k} \equiv \sum_{i \neq k, l}^{i=1, \cdots, m} Y_{k i} P_{l i} \quad(l, k=1, \cdots, m)
$$

We may separate these m^{2} transformations into m sety

$$
\left[A_{l v}, A_{l 2}, \cdots, A_{l m}\right] \quad(l=1, \cdots, m)
$$

Those of the l th set involve only the $m-1$ differential coefficients

$$
P_{l l}, P_{l 2}, \cdots, P_{l l-1}, P_{l l+1}, \cdots, P_{l m} .
$$

For use below we exhibit them in a table (with detached coefficients). By our notation $Y_{i j} \equiv-Y_{j i}$.

	$P_{u 1}$	$P_{l z}$	P_{13}	$P_{l l_{l-1}}$	$P_{l u+1}$	$P_{\text {bm }}$
A_{u}	Y_{n}	Y_{12}	Y_{13}	$Y_{l u-1}$	Y_{l+1}	$Y_{l m}$
$\begin{aligned} & \hline A_{n} \\ & A_{12} \\ & A_{13} \end{aligned}$	$\begin{aligned} & { }^{0} \\ & Y_{21} \\ & Y_{31} \end{aligned}$	$\begin{aligned} & Y_{12} \\ & O_{32} \end{aligned}$	$\begin{gathered} Y_{13} \\ Y_{23} \\ 0 \end{gathered}$	$\begin{aligned} & Y_{Y_{l-1}} \\ & Y_{2 l-1} \\ & Y_{3 l-1} \end{aligned}$	$\begin{aligned} & Y_{1+1} \\ & Y_{22+1} \\ & Y_{3 i+1} \end{aligned}$	$\underset{\substack{Y_{1 m} \\ Y_{2 m} \\ Y_{\text {mm }}}}{ }$
$\begin{aligned} & A_{n-1} \\ & A_{n+1} \end{aligned}$	$\begin{aligned} & Y_{l_{111}} \\ & Y_{i+11} \end{aligned}$	$\begin{aligned} & Y_{l-12} \\ & Y_{t+12} \end{aligned}$	$\begin{aligned} & Y_{l-13} \\ & Y_{t+13} \end{aligned}$	$\begin{gathered} 0 \\ Y_{t+1-1} \end{gathered}$	$\begin{aligned} & Y_{l-1+1} \\ & 0 \end{aligned}$	$\begin{gathered} Y_{l-1, m} \\ Y_{i+1, m} \\ \cdots \end{gathered}$
$A_{l m}$	$Y_{m 1}$	$Y_{m 2}$	$Y_{m 3}$	$Y_{m l-1}$	Y_{m+1}	0

It follows exactly as in $\S 5$ that the m transformations of any set generate a group of m parameters.

Deleting the row A_{u}, we obtain a skew-symmetric determinant of order $m-1$, which we denote by $D_{i l}^{(m-1)}$. Deleting the row $A_{l c}$ and moving the column headed by $P_{v k}$ into the place of the last column, we obtain a bordered skew-symmetric determinant $D_{l k}^{(m-1)}$, the first row and the last column forming its borders.
9. For m odd and $q=2$, we have*

$$
D_{l l}^{(n-1)}=[1,2, \cdots, l-1, l+1, \cdots, m]^{2}
$$

where the Paffian $[1,2, \cdots, l-1, l+1, \cdots, m]$ includes the extreme cases $[1,2, \cdots, m-1]$ and $[2,3, \cdots, m]$. Further $D_{l k}^{(n-1)}$ factors into two Pfaffians of like order, which are seen to be

$$
\left[l, i_{1}, i_{2}, \cdots, i_{m-2}\right],\left[i_{1}, i_{2}, \cdots, i_{m-2}, k\right]
$$

where $i_{1}<i_{2}<\cdots<i_{m-2}$, and each $i \neq l, \neq k$.
Since the interchange of two indices merely changes the sign of the Pfaffian, it follows that all the determinants $D_{i k}^{(m-1)}$ vanish if and only if the Pfaffians
$F_{1} \equiv[2,3, \cdots, m], \cdots, F_{l} \equiv[1,2, \cdots, l-1, l+1, \cdots, m]$,

$$
\cdots, F_{m} \equiv[1,2, \cdots, m-1]
$$

simultaneously vanish. It follows, therefore, from the general theory of Lie that every system of equations invariant under the group $C_{m, 2}, m$ odd, must include the m equations

$$
F_{k}=0 \quad(k=1, \cdots, m)
$$

It follows readily from the properties of Pfaffians that the transformations $A_{k j}$ have the following effect upon the Pfaffians F_{k} :

$$
\begin{array}{ll}
A_{k k}\left(F_{k}\right)=0, & A_{u}\left(F_{k}\right)=F_{k} \delta t \quad(l=1, \cdots, m ; l \neq k), \\
A_{l j}\left(F_{k}\right)=0, & A_{l k}\left(F_{k}\right)=(-1)^{l+k-1} F_{\imath} \delta t \quad\left(\begin{array}{l}
j, l=1, \cdots, m ; \\
l \neq k, j \neq k \\
j \neq j
\end{array}\right) .
\end{array}
$$

For example,

$$
\begin{gathered}
A_{l k}[1,2, \cdots, k-1, k+1, \cdots, m] \\
=[1,2, \cdots, k-1, k+1, \cdots, l-1, k, l+1, \cdots, m] \\
=(-1)^{l \cdots-k-1}[1,2, \cdots, k-1, k, k+1, \cdots, l-1, l+1, \cdots, m] \\
=(-1)^{l+k-1} F_{l} .
\end{gathered}
$$

[^2]The transformation A_{u} therefore gives the following increments:

$$
\delta F_{l}=0, \quad \delta F_{k}=F_{k} \delta t \quad(k=1, \cdots, m ; k+l) .
$$

The transformation $A_{l k}(l \neq k)$ produces the increments

$$
\delta F_{k}=(-1)^{l+k-1} F_{l} \delta t, \quad \delta F_{j}=0 \quad(j=1, \cdots, m ; j \neq k) .
$$

It is readily seen that the m^{2} linearly independent infinitesimal transformations in the m variables F_{k},

$$
\begin{equation*}
A_{u}=\sum_{k \neq l}^{k=1, \cdots, m} F_{k} \frac{\partial f}{\partial F_{k}} \delta t ; \quad A_{l k}=(-1)^{\imath+k-1} F_{l} \frac{\partial f}{\partial F_{k}} \delta t \tag{6}
\end{equation*}
$$

generate a group whose finite transformations are:

$$
\begin{equation*}
F_{i}^{\prime}=\sum_{j=1}^{m} A_{i j} F_{j} \quad(j=1, \cdots, m) \tag{7}
\end{equation*}
$$

where $A_{i j}$ is the minor (without sign) complementary to $\alpha_{i v}$ in the determinant $\left|a_{i j}\right|$. Indeed if we apply formula (5) to the determinant

$$
A_{i j} \equiv\left|\begin{array}{lr}
1 \cdots j-1 j & j+1 \cdots \\
1 \cdots j-1 j+1 & i+1 \cdots m \\
1 \cdots+2 \cdots & i
\end{array}\right|
$$

we find as in $\S 6$, the results

$$
\begin{gather*}
A_{i i}=1+\sum_{s \neq i}^{s=1, \cdots \cdot m} a_{s s} \delta t, A_{i j}=(-1)^{i+j-1} a_{i i} \delta t \tag{8}\\
(i, j=1, \cdots, m ; i \neq j) .
\end{gather*}
$$

It follows that the general infinitesimal transformation of the form (7) gives the following increments:

$$
\begin{gathered}
\delta F_{i}=\left[\begin{array}{c}
s=1, \cdots, m \\
\left.\sum_{s \neq i} a_{s s} F_{i}+\sum_{j \neq i}^{i=1, \cdots, m}(-1)^{i+j-1} a_{j i} F_{j}\right] \delta t \\
(i=1, \cdots, m),
\end{array}\right. \\
\text { (i=1, }
\end{gathered}
$$

from which we readily obtain the m^{2} linearly independent transformations (6). We may therefore enunciate the following theorem* concerning the individual finite transformations of the above groups.

[^3]For m odd, the second compound $C_{m, 2}$ of the general m-ary linear homogeneous group G_{m} possesses a system of m invariant Pfaffians,

$$
F_{i} \equiv[1,2, \cdots, i-1, i+1, \cdots, m] \quad(i=1, \cdots, m)
$$

The transformation $[\alpha]_{2}$ of $C_{m, 2}$, corresponding to any given transformation ($\alpha_{i j}$) of G_{m}, effects upon the F_{i} a linear transformation which is identical with that m-ary transformation $[\alpha]_{m-1}$ of the $(m-1)^{s t}$ compound of G which corresponds to ($\alpha_{i j}$).
10. For m even and $q=2$, the skew-symmetric determinant $D_{u}{ }^{(m-1)}$ vanishes identically. We readily find* that the bordered skew-symmetric determinants

$$
\begin{aligned}
D_{l k}^{(m-1)}= & {\left[l, i_{1}, i_{2}, \cdots, i_{m-2}, k\right]\left[i_{1}, i_{2}, \cdots, i_{m-2}\right] } \\
& (l, k=1, \cdots, m ; l \neq k)
\end{aligned}
$$

if $i_{1}, i_{2}, \cdots, i_{m}-2, l, k$ form a permutation of $1,2, \cdots, m$.
It is readily verified that the transformations $A_{i i}$ leave unaltered the Pfaffian $\left[1,2, \cdots, m\right.$], while the $A_{i j}$ ($i \neq j$) annul it. Hence [1, 2, \cdots, m] is an invariant of $C_{m, 2}$. Consider the $\frac{1}{2} m(m-1)$ Pfaffians

$$
F_{i_{1} i_{2} \cdots i_{m-2}} \equiv\left[i_{1}, i_{2}, \cdots, i_{m-2}\right] .
$$

We find that the transformation $A_{l k}$ gives the increments,

$$
\begin{aligned}
& \delta F_{1 i_{2}} \quad i_{m-2}=0 \quad\left(\text { if every } i_{s} \neq l\right) ; \\
& \delta F_{l i_{2} \cdots \quad i_{m-2}}=F_{k i_{2} \cdots i_{m-2}} \delta t .
\end{aligned}
$$

But these are the increments produced by the transformation $A_{l k}$ of the group $C_{m, m-2}$ upon its variables $F_{i_{1} i_{2} \cdots i_{m-2}}$ [see §7]. We have therefore proved the following theorem, capable of proof using only the finite transformations of the groups involved :

For m even, the secona compound $C_{m, 2}$ of the general m-ary linear group G_{m} possesses as an isolated invariant the Pfaffan $[1,2, \cdots, m]$ and as a system of invariants the set of $C_{m, 2}$ Pfaffians.

$$
\left[\begin{array}{l}
i_{1}, i_{2}, \cdots, i_{m-2}
\end{array}\right] \quad \begin{aligned}
& \binom{i_{1}, i_{2}, \cdots, i_{m-2}=1, \cdots, \cdots, i_{1}}{i_{1} i_{2}<\cdots<i_{m-2}} .
\end{aligned}
$$

The transformation $[\alpha]_{2}$ of $C_{m, 2}$, corresponding to any given transformation ($\alpha_{i j}$) of G_{m}, effects upon these Pfaffians a linear transformation identical with that $C_{m, m-2}$-ary transformation $[a]_{m-2}$ of the $(m-2)^{n d}$ compound of G_{m}, which corresponds to the given ($\alpha_{i j}$).

[^4]
Reciprocity Between the q th and the m - q th Com-

 POUNDS OF G_{m}, §§ 11-15.11. We may express* the q th minors of the determinant $A_{i j} \mid$ adjungate to $\left|\alpha_{i j}\right|$ in terms of the $(m-q)$ th minors of $\left|\alpha_{i j}\right|$:

$$
\begin{gather*}
\left|\begin{array}{cccc}
i_{1} & i_{2} & \cdots & i_{i} \\
j_{1} & j_{2} & \cdots & j_{q}
\end{array}\right| A \tag{9}\\
=D^{q-1}\left\|\begin{array}{lllllll}
1 & 2 & \cdots & i_{1}-1 & i_{1}+1 & \cdots & i_{q}-1 \\
1 & 2 & \cdots & j_{1}-1 & i_{1}+1 & \cdots & m \\
j_{1}+1 & \cdots & j_{q}-1 & j_{q}+1 & \cdots & m
\end{array}\right\|_{\alpha}
\end{gather*}
$$

the double bars indicating that, in the two series of integers written in ascending order, $j_{1}-1$ does not necessarily fall under $i_{1}-1$, etc.

If therefore we write, for every $i_{1}<i_{2}<\cdots<i_{q} \equiv m$,

$$
Y_{12 \ldots i_{1}-1 i_{1}+1 \cdots i_{q}-1 i_{q}+1 \cdots m} \equiv Z_{i_{1} i_{2} \cdots i_{q}}
$$

the general substitution $[\alpha]_{m-q}$ of the group $C_{m, m-q}$ becomes

$$
Z_{i_{1} i_{2} \cdots i_{q}}^{\prime}=D^{1-q} \Sigma\left|\begin{array}{l}
i_{1} i_{2} \cdots i_{q} \tag{10}\\
j_{1} j_{2} \cdots j_{q}
\end{array}\right| A Z_{j_{1} j_{2} \cdots j_{q}},
$$

the summation extending over every combination $j_{1}, j_{2}, \cdots, j_{s}$ of the integers $1, \cdots, m$ taken q together.
12. To obtain the general infinitesimal transformation (10) we proceed as in $\S 6$, using formulæ (8). We find

$$
\begin{aligned}
& \left|\begin{array}{l}
i_{1} i_{2} \cdots i_{q} \\
i_{1} i_{1} \cdots i_{q}
\end{array}\right| A=1+\left(q \sum_{s=1}^{m} \alpha_{s s}-\sum_{s=1}^{q} a_{i_{s} i_{s}}\right) \delta t ; \\
& \left|\begin{array}{c}
i_{1} i_{2} \cdots i_{q} \\
j_{1} j_{2} \cdots j_{q}
\end{array}\right| A=0 \quad \text { (if two or more } j \text { 's differ } \\
& \left|\begin{array}{l}
i_{1} i_{2} \cdots i_{q} \\
j_{1} j_{2} \cdots j_{q}
\end{array}\right| A=(-1)^{r+s-1} A_{i_{\nu_{s}}} \\
& =(-1)^{i_{r}+j_{s}+r+s-1} a_{j_{s i r}} \delta t,
\end{aligned}
$$

if j_{s} be the only j different from every i, and i_{r} be the only i different from every j. Further,

$$
D^{-q+1}=1+(-q+1) \sum_{s=1}^{m} a_{s s} \delta t .
$$

* Compare Muir, end of 897.

Hence $\delta Z_{i_{1 i} i \cdots i_{q}}$ equals δt times the expression

$$
\begin{gathered}
\left(\sum_{s=1}^{m} a_{s s}-\sum_{s=1}^{q} a_{i_{s} s_{s}}\right) Z_{i_{1} i_{2} \cdots i_{q}} \\
+\sum_{r, s}^{1, \cdots, q}(-1)^{i_{r}+j_{s}+r+s-1} a_{s_{s} i_{r}} Z_{i_{1} \cdots i_{s-1} 1_{s}^{j s_{s}+1} \cdots i_{r-1} 1_{r}+1 \cdots i_{q}}
\end{gathered}
$$

summed also for $j_{s}=i_{s-1}+1, \cdots, i_{s}-1$. If we perform the summation with respect to s in the latter sum (see end of $\S 6)$, it becomes

$$
\sum_{r, j}(-1)^{i_{r}+j+r} a_{j i_{r}} Z_{i_{1} \cdots i_{r-1} i_{r+1} \cdots i_{q}},
$$

summed for

$$
r=1, \cdots, q ; j=1, \cdots, m, \quad j \neq i_{1}, i_{2}, \cdots, \text { or } i_{q}
$$

13. Setting $a_{l k}=1$ and the other α 's equal zero, we obtain m^{2} linearly independent infinitesimal transformations $A_{v k}{ }^{\prime}$. Setting

$$
Q=\frac{\partial f}{\partial Z} \delta t,
$$

and proceeding as in §7, we find

$$
\begin{gathered}
A_{l k}^{\prime}=(-1)^{l+k-1} \sum_{i_{1}, \cdots, i_{q}}^{1 \cdots m} Z_{i_{1} \cdots i_{r-1} i_{r+1} \cdots i_{q}} Q_{k i_{1} \cdots i_{r-1} i_{r+1} \cdots i_{q}} \\
\left(i_{1}<i_{2} \cdots<i_{q}, \text { and each } i \neq l, \neq k\right) . \\
A^{\prime}-A_{k k}^{\prime}=\sum_{i_{1} \cdots i_{q}}^{1 \cdots m} Z_{k i_{1} \cdots i_{r-1} i_{r+1} \cdots i_{q}} Q_{k i_{1} \cdots i_{r-1} i_{r+1} \cdots i_{q}} \\
\left(i_{1}<i_{2} \cdots<i_{q}, \text { and each } i \neq k\right),
\end{gathered}
$$

where we denote by A^{\prime} the following transformation

$$
A^{\prime} \equiv \sum_{i_{1} \cdots i_{q}}^{1 \cdots m} Z_{i_{1} i_{2} \cdots i_{q}} Q_{i_{1} i_{2} \cdots i_{q}}
$$

To prove that A^{\prime} belongs to the group $C_{m, m-q}$ under consideration, we note that $A^{\prime}-A_{k k}^{\prime}$ contains $C_{m-1, q-1}$ terms, so that

$$
m A^{\prime}-\sum_{k=1}^{m} A_{k k}^{\prime}
$$

contains $m C_{m-1, q-1}$ terms which coincide in sets of q each, and among which every one of the $C_{m, 2}$ terms of A^{\prime} is represented. Hence, since $m C_{m-1, q-1}=q C_{m, q}$, it follows that

$$
(m-q) A^{\prime}=\sum_{k=1}^{m} A_{k k}^{\prime} .
$$

14. The set of m infinitesimal transformations of $C_{m, m-q}$,

$$
A^{\prime}-A_{k k}^{\prime}, \quad A_{l k}^{\prime} \quad(l=1, \cdots, m, l \neq k)
$$

generate a group of m parameters which is identical with the group generated by the m transformations $A_{k l}(l=1, \cdots, m)$ of the group $C_{m, q}$. We thus see the exact manner in which the q th and $(m-q)$ th compounds of the general m-ary linear group G_{m} are isomorphic.

When we confine ourselves to the group of those transformations of G_{m} of determinant $D=1$, the q th and the ($m-q$)th compounds are not merely isomorphic but identical. Indeed the $m^{2}-1$ transformations of the $C_{m, m-q}$,

$$
A_{l k}^{\prime}(l, k=1, \cdots, m, l \neq k), A_{\mathrm{n}}^{\prime}-A_{k k}^{\prime} \quad(k=2, \cdots, m)
$$

are identical which the $m^{2}-1$ transformations

$$
A_{k l}(k, l=1, \cdots, m, k \neq l), A_{11}-A_{k k} \quad(k=2, \cdots, m)
$$

of $C_{m, q}$, the corresponding transformations being given by the same pair of subscripts $(k l)$ or ($1 k$).
15. To illustrate the reciprocity between the groups $C_{m, q}$ and $C_{m, m-q}$, we take the example $m=5, q=2$. We write the table of $\S 8$ for the transformations of $C_{5,2}$ which belong to the set $l=2$; viz.,

By $\S 6$ we obtain the following transformations of $C_{5,3}$:

	$-P_{345}$	P_{145}	P_{135}	P_{134}
$A^{\prime}-A_{22}{ }^{\prime}$	$-Y_{345}$	Y_{145}	Y_{135}	Y_{134}
$+A_{12}$	0	Y_{245}	Y_{235}	Y_{234}
$+A_{32}$	$-Y_{245}$	0	Y_{125}	Y_{124}
$-A_{42}$	$-Y_{235}$	$-Y_{125}$	0	Y_{123}
$+A_{52}$	$-Y_{234}$	$-Y_{124}$	$-Y_{123}$	0

We thus observe that any term as $Y_{245} P_{145}$ of the latter table may be derived at once from the corresponding term $Y_{18} P_{23}$ of the former by taking as subscripts to the one those
integers $1,2, \cdots, 5$ (in order), which do not occur among the subscripts to the other term. The rule which, if applied to the first table, gives the Pfaffian invariant $F_{2} \equiv[1345]$ will, when applied to the second table, give

$$
\bar{F}_{2} \equiv-\left(Y_{213} Y_{245}-Y_{214} Y_{235}+Y_{215} Y_{234}\right),
$$

which we will denote by $-{ }_{2}$ [1345], the first subscript to the Y^{\prime} 's being 2 throughout.

Forming the remaining four tables for the group $C_{5,2}$ and the corresponding tables for $C_{5,3}$, we obtain the following results :

$$
\begin{aligned}
& F_{1} \equiv[2345], \bar{F}_{1}={ }_{1}[2345] ; F_{3} \equiv[1245], \bar{F}_{3}={ }_{3}[1245] ; \\
& F_{4} \equiv[1235], \bar{F}_{4}=-_{4}[1235] ; F_{5} \equiv[1234], \bar{F}_{5}={ }_{5}[1234] .
\end{aligned}
$$

In general, if F_{j} or $F_{i_{1} 1_{2} \cdots i_{m-2}}$ denote the Pfaffians formed from the tables of the transformations $A_{k l}$ of $C_{m, 2}$, we will denote by $\overline{F_{j}}$ or $\bar{F}_{i_{1} i_{2} \cdots i_{m-2}}$ the Pfaffians formed from the corresponding tables of the transformations $A_{v k}{ }^{\prime}, A^{\prime}-A_{k k}{ }^{\prime}$ of $C_{m, m-2}$.

Group Induced by $C_{m, m-2}$ upon its Invariants, $\S \S 16-18$.
16. For m odd and $q=2$, the group $C_{m, m-q}$ has a system of m invariant Pfaffians \bar{F}_{j} of degree $\frac{1}{2}(m-1)$. By $\S 9$, the transformation $A^{\prime}-A_{k k}^{\prime}$ effects upon the \bar{F}_{j} the transformation

$$
\sum_{j \neq k}^{j=1, \cdots, m} \bar{F}_{j} \frac{\partial f}{\partial \bar{F}_{i}} \delta t ;
$$

while $A_{l k}{ }^{\prime} \equiv(-1)^{k+l-1} A_{k l}$ produces the transformation

$$
\bar{F}_{k} \frac{\partial f}{\partial \bar{F}_{l}} \delta t .
$$

Since the Eulerian operator A^{\prime} multiplies each \bar{F}_{j} by $\frac{1}{2}(m-1)$, it follows that $A_{k k}^{\prime}$ produces the following transformation :

$$
\begin{gathered}
\frac{1}{2}(m-1) \sum_{j=1}^{m} \bar{F}^{\frac{\partial f}{}} \frac{\bar{F}_{j}}{\partial t-\sum_{j \neq k}^{j=1, \cdots, m} \bar{F}_{j} \frac{\partial f}{\partial \bar{F}_{j}} \delta t} \\
\equiv \frac{1}{2}(m-3) \sum_{j \neq k}^{j=1, \cdots, m} \bar{F}_{j} \frac{\partial f}{\partial \bar{F}_{j}} \delta t+\frac{1}{2}(m-1) \bar{F}_{k} \frac{\partial f}{\partial \overline{\bar{F}}_{k}} \delta t .
\end{gathered}
$$

The finite transformations of the group induced upon the \bar{F}_{j} by the group $C_{m, m-2}$ have therefore the form

$$
\begin{equation*}
\bar{F}_{i}^{\prime}=D^{\frac{m-3}{2}} \sum_{j=1}^{m} \alpha_{i j} \bar{F}_{k} \quad(i=1, \cdots, m) \tag{11}
\end{equation*}
$$

17. For m even and $q=2$, the group $C_{m, m-q}$ has as an isolated invariant a Pfaffian of degree $m / 2$ and as a system of invariants the C_{m}, Pfaffians $\bar{F}_{i_{1} i_{2} \cdots{ }_{i_{m-2}}}$ of degree $\frac{1}{2}(m-2)$. It follows from $\$ \S 10,13,14$ that the transformation $(-1)^{l+k-1} A_{l k}^{\prime}(l \neq k)$ of $C_{m, m-2}$ gives rise to the following increments in the Pfaffian invariants :

$$
\left\{\begin{array}{ll}
\delta \bar{F}_{i_{1} i_{2} \cdots i_{m-2}}=0 \tag{a}\\
\delta \bar{F}_{k i_{2} \cdots i_{m-2}}=\bar{F}_{l i_{2} \cdots i_{m-2}} \delta t ;
\end{array} \quad(\text { if each } i \neq k)\right.
$$

also that $A^{\prime}-A_{k k}^{\prime}$ produces the increments (a) (when l is replaced by k). Since A^{\prime} multiplies each $\bar{F}_{i_{1} \ldots i_{m-2}}$ by $\frac{1}{2}(m-2)$, it follows that $A_{k k}{ }^{\prime}$ produces the increments

$$
\left\{\begin{array}{l}
\delta \bar{F}_{i_{1} i_{2} \cdot i_{m-2}}=\frac{1}{2}(m-2) \bar{F}_{i_{1} i_{1} \cdots i_{m-2}} \delta t \quad(\text { if each } i \neq k), \tag{b}\\
\delta \bar{F}_{k i_{2} \cdots i_{m-2}}=\frac{1}{2}(m-4) \bar{F}_{k i_{2} \cdots i_{m-2}} \delta t .
\end{array}\right.
$$

Having thus determined the infinitesimal transformations of the group induced by the group $C_{m, m-2}$ upon its system of invariants $\bar{F}_{i_{1}} \cdots i_{m-2}$, we may readily show that the finite transformations of this group are

$$
\bar{F}_{i_{1} i_{2} \cdots i_{m-2}}^{\prime}=D^{1-\frac{m}{2}} \sum_{j_{1} \cdots, j_{m-2}}^{1 \cdots m}\left|\begin{array}{l}
i_{1} \cdots i_{m-2} \tag{12}\\
j_{1} \cdots j_{m-2}
\end{array}\right| A \bar{F}_{j_{1} j_{2} \cdots j_{m-2}} .
$$

Indeed, proceeding as in $\S \S 11-13$, we find that the infinitesimal transformation gotten from (12) by setting $a_{k k}=1$ and the other a 's $=0$ has precisely the increments (b), while that given by setting $a_{1 c}=1$ and the other a 's $=0$ has, when multiplied by $(-1)^{l+k-1}$, precisely the increments (a).

To give (12) another form, we set

$$
\bar{F}_{i_{1} i_{2} \cdots i_{m-2}} \equiv W_{i_{m-1}{ }_{m}} \quad\binom{i_{i}<i_{2-1}<\cdots<i_{m-2}}{i_{m-1}<i_{m}},
$$

when i_{m-1} is the first and i_{m} the second integer $<m$ which does not occur in the series $i_{1}, i_{2}, \cdots, i_{m-2}$.

Further, formula (9) of $\S 11$ becomes for $q=m-2$

$$
\left|\begin{array}{l}
i_{1} i_{2} \cdots i_{m-2} \\
j_{1} i_{2} \cdots j_{m-2}
\end{array}\right| A=D^{m-3}\left|\begin{array}{l}
i_{m-1} i_{m} \\
j_{m-1} j_{m}
\end{array}\right|_{\alpha} .
$$

Hence the transformation (12) takes the form*

$$
W_{i_{m-1} i_{m}}^{\prime}=D^{\frac{m-t}{2}} \sum_{j_{m-1}}^{1, \cdots, m}\left|\begin{array}{l}
i_{m} i_{m} \tag{1}\\
i_{m-1} i_{m} \\
j_{m}
\end{array}\right|_{\alpha} W_{j_{m-1 j m}}
$$

18. We may enunciate the results proven in §§ 16-17 for the individual transformations of the groups concerned:

To any given transformation ($\alpha_{i j}$) of determinant D of the general m-ary linear homogeneous group G_{m}, there corresponds a transformation $[\alpha]_{m-2}$ of the $(m-2)^{d}$ compound $C_{m, m-2}$ which gives rise to a linear transformation upon its system of Pfaffian invariants, viz:
1° : for m odd, the m-ary transformation,

$$
\overline{F_{i}^{\prime}}=D^{\frac{m-3}{2}} \sum_{j=1}^{m} \alpha_{i j} \overline{F_{j}} \quad(i=1, \cdots, m)
$$

which for $D=1$, is precisely the given transformation of G_{m}.
2°. for m even, the $\frac{1}{2} m(m-1)$-ary transformation (12) or (12), where, for $D=1,\left(12_{1}\right)$ belongs to the second compound of G_{m}, and (12) to the $(m-2)^{\text {d }}$ compound of the $(m-1)^{\text {st }}$ compound of G_{m}.

University of California,
August 9, 1898.

A SECOND LOCUS CONNECTED WITH A SYSTEM OF COAXIAL CIRCLES.

BY PROFESSOR THOMAS F. HOLGATE.
(Read before the American Mathematical Society at its Fifth Summer Meeting, Boston, August 19, 1898.)

In a paper read before this Society at its Toronto Meeting and published in the Bulletin for November, 1897, I

* We may verify (12_{1}) directly, using the method of $\& 6$ for $q=2$. The presence of the factor $D^{\frac{m-4}{2}}$ influences only the transformations $A_{k k}{ }^{\prime}$. There occurs, however, some difficulty as to signs in passing from the W^{\prime} 's to the F^{\prime} s. Likewise the results of $\& \% 11-14$ could doubtless be proved by the method of $\xi 6$.

[^0]: * An analogous isomorphism between certain linear groups in the Galois field of order p^{n} has heen discussed by the writer in an article presented to the London Mathematical Society.

[^1]: * Scott, Theory of Determinants, p. 53.
 \dagger Muir, Theory of Determinants, $\& 174$.

[^2]: * Muir, Theory of Determinants, $\% \% 159,163$.

[^3]: * This theorem is capable of proof by determinants without having recourse to the infinitesimal transformations of the groups concerned.

[^4]: * Muir, Theory of Determinants, \& 163.

