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AN ELEMEJSTTABY PEOOF THAT BESSEL7 S FUNC
TIONS OF T H E ZEROTH OEDEE HAVE 

AN I N F I N I T E NUMBEE OF 
EEAL BOOTS. 

BY PROFESSOR MAXIME BüCHER. 

(Read before the American Mathematical Society at the Meeting of Febru
ary 25, 1899. ) 

T H E only elementary proof * with which I am acquainted 
that the function 

/y>" / y » * A » " 
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^oW — x 2* ^ 2242 224262 ^ 

has an infinite number of real roots is the one originally 
given by Bessel (cf. Gray and Mathews : Treatise on Bessel 
Functions p. 44). I wish to call attention to a second 
elementary method of proving this theorem. Although this 
method is tolerably obvious I do not think it has been used 
for this purpose before. 

In the first place, it is clear from the series for J0(x) that 
this function has at least one positive root ; for if we substi
tute in this series first the value x = 0, and then the value 
x = 3, we get first a positive and then a negative value. 
Let us denote the smallest positive root of J0(x) by c, a 
quantity whose value can be readily computed as 2.405--. 

We will now prove the theorem : 
Any real solution of the differential equation 

has an infinite number of real roots. 

* The proofs frequently met with, one depending on the asymptotic 
value of J0{x), and the other on what I have called (cf. BULLETIN, vol. 4, 
p. 298) Sturm's theorem of comparison, cannot be regarded as elementary 
as they depend on general theorems which can hardly be proved rigor
ously without some rather delicate analysis. 
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Since J0(x) is a particular solution of (1) the theorem 
just stated includes as a special case the theorem we set out 
to prove. The proof of our theorem follows immediately 
from the following formula in which F(x) denotes any real 
solution of (1), a a positive constant, and x a real quantity 
confined to the interval a > x > — a 

(2) nF(a)J0(x) = £Fs/o72 + x2-2axcos<p d<p. 

If in this formula we let a > c and x = c, we get 

Jo Fs/g? + c2 —• 2ae cos <pd(p = 0. 

Now as <p varies from 0 to it the argument of F varies from 
a — c to a + c. Therefore .F(^) is zero for some value of x 
between these limits, which it should be noticed are any 
two quantities either both positive or both negative and dif
fering by 2c. We have thus proved that every real solution of 
(1) has at least one root in any interval of length 2c = 4.810 •••, 
not including the origin, and therefore an infinite number of real 
roots. Incidentally we have found an upper limit (not very 
close to be sure) for the difference between two successive 
roots. 

Although formula (2) which we have here used is not 
unfamiliar* it is perhaps well in order to bring out its thor
oughly elementary character to deduce it here from first 
principles. In doing this I use a method not essentially 
different from that used by Heine in his Handbuch der 
Kugelfunktionen, second edition, v o l . l , §83.f 

Letting y = F*/à1 + x2 — 2a# cos <p we find by direct com
putation that the first member of ( 1 ) reduces to 

d r — a sin <p "i 
d ^ l ^ F + W ^ ^ ^ FfVd>+ x*-2axvos9\-

We see therefore that 

I Fs/V + xl — 2 ax cos <p d<p 

is, provided that |#|=4=a, a solution of (1). Moreover this 
integral does not become infinite when x = 0, and since 

* It is not contained in Gray and Mathews's Treatise although the 
special case in which F=J0 follows immediately from formula (69') of 
that book. 

t An entirely different method is given in ? 84. 
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every solution of (1) linearly independent of J0 (x) does be
come infinite when x = 0 we see that the above integral 
must be equal when a > a ; > - a t o a constant multiple of 
JQ(x). By letting x = 0 we see that this constant has the 
value 7TjP(a). 

I have arranged the above treatment so as to avoid any 
reference to partial differential equations. I t is, however, 
very closely connected with the following theorem : 

Any solution of the equation 

ro\ 'tfu d2u 

(8) _ + _ + „ « < ) 
which together with its first and second partial derivatives is single 
valued and continuous throughout a certain region of the (x,y)~ 
plane will change sign at two or more points of any circle of radius 
c == 2 . 4 0 5 ••• which lies wholly in this region.* 

* Cf. H. Weber, Math. Annalen, vol. 1, p. 10, or for a less simple proof 
Pockels's book: "Ueber die partielle Differentialgleichung Au-{-k2u — 0, " 
p. 217. 

I take this opportunity of referring to another point in Pockels's book 
(pp. 225-228). I t was here, I believe, that the theorem was for the first 
time stated and proved that at a point at which n curves u = 0 cross each 
other (u being a solution of the equation Au + Jc2u = 0) they make angles 
TTJn with one another. The method of proof there used seems to me un
satisfactory from the point of view of rigor, at least in the general case in 
which Tc2 is a function of (œ, y). The following proof will, I think, be 
found rigorous and if possible even simpler than Pockels's proof. We 
will consider at once the more general differential equation 

d2u , d2u , , 3w . du , . 

where #, x> V* are at the point in question (which for simplicity I take as 
the origin) analytic functions of (a?, y). We know (Cf. Picard : Journal 
de VÉcole Polytechnique, Cahier 60, p. 91) that any solution uoî the above 
equation which, together with its first and second partial derivatives, is 
continuous throughout a region including the origin will be analytic at 
the origin. Developing u by Maclaurin's theorem we get (since the curve 
u = 0 is to have a multiple point at the origin) u -= un + ^«+1 + " ' where 
ujt is a homogeneous polynomial of degree Jc. Substituting this in the 
differential equation we see at once that un satisfies Laplace's equation 
and, therefore, un = 0 represents n straight lines through the origin mak
ing angles n;\n with one another, and these lines are the tangents to the 
curve u = 0 at the origin. 

By the same method we see that if the curve u = c ( where c is a constant 
different from zero) has a multiple point of the wth order at P, the tan
gents at this point will make angles ^\n with one another when and only 
when the curve f = 0 has a multiple point at P of order at least n — 1. 
( In order that u = c should have a multiple point of the nth order at P 
i t is necessary that ip — 0 should have there a multiple point whose order 
is at least n — 2. ) 

I t is hardly necessary to add that these same methods admit of appli
cation to the similar problems in space of three dimensions. 



3 8 8 APPELLES FACTORIAL FUNCTIONS. [ M a y , 

This theorem can also be immediately applied to Bessel 's 
functions whose order is no t zero. Le t Fn(x) be a n y real 
solution of Bessel 's equat ion 

d2y 1 dy 

<4> s + i s + l 1 - ? ) » - 0 -
Using polar coordinates r, # we have as a solution of ( 3 ) 
when n is real 

u = cosw# • Fn(r), 

when n is pu re imaginary 

u= ein*-Fn(r). 

Applying the theorem jus t quoted to these solutions we get 
t he theorems : 

If n2 =̂ 1, Fn(x) vanishes at least once in any interval of length 
2e = 4.810 ••• which does not include the origin. 

Ifn>l} Fn(x) vanishes at least once in any interval of length2e 

throughout which I x I > c I esc I I . 

As a special application I note t ha t we t h u s get an upper 
l imit for t he value of t he smallest root of Fn(x) and t h u s in 
par t icu la r of Jn(

x)-
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A G E N E R A L I Z A T I O N O F A P P E L L ' S F A C T O E I A L 
F U N C T I O N S . 

BY DR. E. J. WILCZYNSKI. 

(Eead before the American Mathematical Society at the Annual Meeting, 
December 28, 1898. ) 

L E T F(S, Z) = 0 

b e a n algebraic equat ion defining s as function of z. Le t R, 
t h e corresponding R i e m a n n ' s surface, be of class p. By a 
system of crosscuts av —, ap ; bv —, bp ; cv —, cp the (2p + 1 ) -
ply connected surface R is changed into a simply connected 
surface R,. 


